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1. STATEMENT OF OBJECTIVES

The objective of this project is to integrate and prototype the datapath and the control units of the
simple 32-bit MIPS processor with five pipeline stages. This processor should be written in
Verilog hardware language and must be able to perform arithmetic/logic, data movement, and
flow control instructions. Furthermore, students should design and architect the memory to
support the following zones: code section and data section. Finally, having the processor operate
on an Intel DE2-115 FPGA development board is the ultimate goal of this project. The learning
outcomes of this project will result in students having hands- on experience on building a
computer processor and implementing it on hardware.

2. THEORETICAL BACKGROUND
Modelsim - source: (“ModelSim HDL simulator | Siemens Software”)

ModelSim is a hardware simulation and debugging tool developed by Mentor Graphics, which is
used for designing and testing digital circuits. It is one of the most widely used simulation tools
in the industry and is often used in the development of electronic systems, ranging from simple
digital circuits to complex integrated circuits (ICs) and system-on-chip (SoC) designs.

ModelSim supports both Verilog and VHDL hardware description languages (HDLs), which are
used to describe the behavior of digital circuits. HDLs are programming languages that allow
designers to describe the function and behavior of a digital circuit, including its inputs, outputs,
and internal workings, in a way that can be simulated and tested.

ModelSim uses a powerful simulation engine that can simulate millions of logic gates and
thousands of flip-flops in a matter of seconds. It allows designers to simulate and test their
designs before they are physically implemented, which can help to catch errors and reduce the
time and cost of development.

In addition to simulation, ModelSim also provides advanced debugging features, such as
waveform viewing and tracing, which allow designers to visualize and analyze the behavior of
their designs. It also includes support for advanced verification methodologies such as Universal
Verification Methodology (UVM) and Open Verification Methodology (OVM).



MIPS Implementation - source: (https:/www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Before looking at the diagram we need a little bit of context:

A very brief introduction to logic circuits.

A very high-level view of the processor's datapath.

A quick overview of some intermediate-level processor organizations. The single-cycle
organization is one of these organizations.

After looking at the diagram we will:

Look at black-box descriptions of the components of the diagram.
Take a quick look at the functions of control signals in the diagram.

Logic Circuits: Logic circuits use two different values of a physical quantity, usually voltage, to
represent the boolean values true (or 1) and false (or 0). Logic circuits can have inputs and they
have one or more outputs that are, at least partially, dependent on their inputs. In logic circuit
diagrams, connections from one circuit's output to another circuit's input are often shown with an
arrowhead at the input end.

In terms of their behavior, logic circuits are much like programming language functions or
methods. Their inputs are analogous to function parameters and their outputs are analogous to
function returned values. However, a logic circuit can have multiple outputs.

There are two basic types of logic circuitry: combinational circuits and state circuits.

e (Combinational circuit behaves like a simple function. The output of a combinational
circuit depends only on the current values of its input.

e State circuitry behaves more like an object method. The output of state circuitry does not
just depend on its inputs — it also depends on the past history of its inputs. In other
words, the circuitry has memory.

This is much like an object method whose value is dependent on the object's state: its instance
variables. These two types of circuitry work together to make up a processor datapath.


https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml
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Figure 2.1: Processor datapath
A processor's datapath is conceptually organized into two parts:

e State elements hold information about the state of the processor during the current clock
cycle. All registers are state elements.

e Combinational logic determines the state of the processor for the next clock cycle. The
ALU is combinational logic.

This diagram, like most diagrams on this web site, adheres to the following conventions:

e Clock signals are colored orange.
e Control signals are colored blue.

There are four major processor organizations:

e Single-cycle organization: This is the organization described in this web presentation. It
is characterized by the fact that each instruction is executed in a single clock cycle. It is
not a realistic implementation — it requires two separate memories: one for data and one
for instructions. Also, the clock cycle has to be made quite long in order for all of the
signals generated in a cycle to reach stable values.

e Multicycle organization: This organization uses multiple clock cycles for executing each
instruction. Each cycle does only a small part of the work required so the cycles are much
shorter. Much of the circuitry is the same as the single-cycle implementation. However,
more state components must be added to hold data that is generated in an early cycle but
used in a later cycle.



e Pipelined organization: Like the multicycle organization, the pipelined organization uses
multiple clock cycles for executing each instruction. By adding more state components
for passing data and control signals between cycles, the pipelined organization turns the
circuitry into an assembly line. After the first cycle of one instruction has completed you
can start the execution of another instruction, while the first moves to its next cycle.
Several instructions can be in different phases of execution at the same time.

e Register renaming organization: Register renaming is an extension of the pipelining idea.
It deals with the data dependence problem for a pipeline — the fact that instructions in

the pipeline produce data needed by other instructions in the pipeline.

Pipelining - source: (https:/www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The basic concept of pipelining is to break up instruction execution activities into stages that can
operate independently. Every instruction passes through the same stages much like an assembly
line.

For example, we could set up the following stages for a MIPS pipeline.

IF - instruction fetch and PC increment

ID - source register fetch and instruction decode

EX - ALU source selection, ALU operation, and branch target calculation
MEM - data memory access

WB - write back to destination register

With these pipeline stages, a sequence of instructions can be executed as shown below. Time
progresses from left to right. Each horizontal division represents one clock period.

ls S0, 0(%t1) IF | ID | EX | MEM | WB

ls $£2, 0($t2) IF | ID | EX | MEM | WB

mul.s $f4, $0. $£2 IF | ID | EX | MEM | WB

add.s Sf6, $f6, $f4 IF | ID | EX | MEM | WB

addi $tl. $t1. 4 IF | ID | EX | MEM | WB

addi 52, $t2. 4 IF | ID | EX [MEM | WE

Figure 2.2: Pipeline stages


https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Benefit of Pipelining - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

As you can see from the figures below, pipelining increases instruction throughput. Notice that
after the 5th cycle, the unpipelined execution completes only one instruction every 5 cycles,
while the idealized pipelined execution completes 5.

Ideally, instruction throughput is increased to 1 instruction per clock. In other words, the clocks
per instruction (CPI) factor in the performance equation is reduced from 5.0 to 1.0.

Unpipelined Execution
instrl | IF | 1D | EX |r~1':r'.| We
inatr? IF | 1D | EX |M':F.| We
instr3 IF | 1D | EX |r~1':r'.| W |
Idealized Pipelined Execution
inatrl 1F 10 | EX | MEM | WB
izt IF | I | Ex | MEM | wB
instr3 IF | ID | EX | MEM | WB
mstrd IF | ID | EX | MEM | WB
instrs IF | ID | EX | MEM | WB
inztrb IF | ID | EX | MEM | WB
mnatr] IF | I0 | EX | MEM | WB
instrd IF | ID | Ex | MEM | WB
mnstrd IF | ID | EX | MEM | WB
instrl0 IF | ID | Ex | MEM | WB
mnztrll IF | ID | EX | MEM | WE

Figure 2.3: Pipeline benefits
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Pipeline Implementation - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The best starting point for a pipelined implementation is a single-cycle implementation. For
example, for a MIPS pipeline you could start with an implementation whose high-level data path
is shown as the "Before Pipelining" diagram below.

IF ID EX Mem wWB
PC Update Control, ALUSre MUX, Mamory MemtoReg
Control, PC RegDst MLUX, ALU Control, MU
Registers ALU

Figure 2.4: Before pipeline implementation

To implement pipelining registers are added between stages. The pipelining registers are shown
in light green in the "After Pipelining" diagram below. The pipelining registers hold data and
control signals that are produced in an early stage for use in later stages.

Signals generated in a stage cannot be held for more than one cycle. A signal that is generated in
an early stage and used several stages later must pass through all of the intermediate pipeline
registers. For example, a control signal that is produced in the ID stage and used in the WB stage
must pass through 3 pipelining registers: the ID/EX registers, the EX/MEM registers, and the
MEM/WB registers.

IF ID EX Mem WB
PC Update Control, ALUSre MUX, Memory MemtoReg
Control, PC RegDst MUX, ALU Control, MU
Registers ALU

Figure 2.5: After pipeline implementation
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Obstacles to Pipelining - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The analogy between a pipeline and an assembly line breaks down in one important respect.
Putting together a door for a car does not depend on cars further along in the assembly line.

But there are dependencies between instructions. These can be seen in the diagram below where
data is passed back from a later stage to an earlier stage. The ones that involve updating the PC
(red) are called control hazards. The ones that involve writing data back to registers (purple) are
called data hazards.

Both of these dependencies are inherent in the instruction set. Compiler writers call them control
and data dependencies. In both cases the execution of a later instruction depends on the results of
earlier instruction. There are other obstacles, called structural hazards that arise from the starting
point of the pipelining implementation

IF ID EX Mem WB
PC Update Control, ALUSre MUX, Memory MemtoReg
Control, PC RegDst MUX, ALU Control, MU
Registers ALU

LT [

Figure 2.6: Dependencies

Control Hazards - source: (https:/www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Control hazards arise from branches and jumps. They involve signals that are passed from a later
stage to an earlier stage:

e A branch or jump target address is not available until the ID stage but it needs to be
passed back to the PC for the IF stage of the next instruction.

e The condition for a branch instruction is not tested until the EX stage but it needs to be
passed back to the PC Update Control for the IF stage of the next instruction.


https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml
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Data Hazards - source: (https:/www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Data hazards arise from instructions producing data that is used in later instructions. They
involve signals that are selected by the MemtoReg multiplexer in the WB stage to be written to a
register. The register may be read by a later instruction in its ID stage.

Structural Hazards - source: (https:/ www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Structural hazards are hazards that depend on the starting point for the implementation. For
example, if we started with a multicycle implementation, we would have problems in a pipeline
because the ALU is used in more than one stage by the same instruction. Executing a branch
instruction, the ALU is used to increment the PC, compute a branch target address, and compare
two source operands. These uses are going to prevent other instructions in the pipeline from
using the ALU.

Pipelining and the Instruction Set

Pipelining is one of the primary reasons why RISC processors have a significant speed advantage
over CISC processors. If arithmetic and logical instructions can access memory for source or
destination operands then it is much more difficult to break down instruction execution into
stages with equal durations. If memory addressing modes are complex then this problem just gets
harder. If instructions have varying lengths it is more difficult to start a new instruction every
cycle.

When pipelining is done with a CISC processor it is done at a different level. The execution of
instructions is broken down into smaller parts which can then be pipelined. In effect, The CISC
instructions are translated into a sequence of internal RISC instructions, which are then
pipelined. This adds complexity to the processor and generally does not produce as much benefit.
For upward compatibility, the Intel 80x86 family of processors, including Pentium processors
since the early 1990s, have used this approach.

5-Stage-Pipeline MIPS - source: (“VHDL MIPS 5 stage pipeline Bug”)
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Figure 2.7: 5-stage pipeline for MIPS

The figure above Figure 2.7 shows the complete 5 stages required for the 32-bit mips processor.
The figure isn’t a complete list of requirements for completing the processor, muxes, control
units, and hazard block isn’t displayed. However, it is a general idea for completing the
processor.

Understanding Mips Instructions - source: (“VHDL MIPS 5 stage pipeline Bug”)

Data types:
1. Instructions are all 32 bits
2. Dbyte(8 bits), halfword (2 bytes), word (4 bytes)
3. acharacter requires 1 byte of storage
4. an integer requires 1 word (4 bytes) of storage

Registers
e 32 general-purpose registers
e register preceded by $ in assembly language instruction

e two formats for addressing:

o using register number e.g. $0 through $31
o using equivalent names e.g. $t1, $sp
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e special registers Lo and Hi used to store result of multiplication and division
o not directly addressable; contents accessed with special instruction mthi ("move
from Hi") and mflo ("move from Lo")
o stack grows from high memory to low memory

Register Alternative e
Number Name Description
| 0 || Zero ||the value 0 |
| 1 ” Sat ||(assembler temporary) reserved by the assembler |
| 2-3 || Svl - §vl ||(1'alues} from expression evaluation and function results |
47 $al - $a3 {arguments) First four parameters for subroutine.

Not preserved across procedure calls

{temporaries) Caller saved if needed. Subroutines can use w/out
8-13 $t0 - $t7 saving.
Not preserved across procedure calls

i(saved values) - Callee saved.
16-23 5s0 - §s7 A subrovtine vsing one of these must save original and restore it before exiting.

Preserved across procedure calls

{temporanes) Caller saved if needed. Subroutines can use w/'out

495 i saving.
24-23 518 - $t9 These are in addition to 5t0 - 5t7 above.

Mot preserved across procedure calls,

26-27 ” SkO - $k1 ||resen'ed for use by the interrupt/trap handler
global pointer.
28 Sgp Points to the middle of the 64K block of memory in the static data
segment.
29 $sp stack pointer

Points to last location on the stack.

saved value / frame pointer
Preserved across procedure calls

| 31 || Sra ||re111m address

30 $s8/$4p

Figure 2.8: Register descriptions

Program Structure - source: (“VHDL MIPS 5 stage pipeline Bug”)
e just plain text file with data declarations, program code (name of file should end in suffix
.s to be used with SPIM simulator)

e data declaration section followed by program code section

Data Declarations

12




placed in section of program identified with assembler directive .data
declares variable names used in program; storage allocated in main memory (RAM)

placed in section of text identified with assembler directive .text

contains program code (instructions)

starting point for code execution given label main:

ending point of main code should use exit system call (see below under System Calls)

Comments

e anything following # on a line
e # This stuff would be considered a comment

Load / Store Instructions - source: (Lecture slides)

RAM access is only allowed with load and store instructions. all other instructions use register
operands.

13



1w register_destination, RAM_source
#copy word (4 bytes) at source RAM location to destination register.
1b register_destinaticon, RAM source

#copy byvte at source EAM location to low-order byte of destination register,
# and sign-extend to higher-order bytes

store word:
S register_source, RAM _destination
#store word in source register into EAM destination
sh register_source, RAM destination
#store byvte (low-order) in source register into EAM destination
load immediate:
1i register_destination, wvalue

#load immediate value into destination register

Figure 2.9: lw/sw instructions

Arithmetic Instructions
e most use 3 operands

e all operands are registers; no RAM or indirect addressing
e operand size is word (4 bytes)

14



add Ltae,$tl,5t2 # $te = #t1 + $t2; add as signed (2's complement) integers
sub %t2,9t3,5t4 # $t2 = $t3 D $t4
addi £t2,%8t3, 5 # %tZ2 = $t3 + 5; "add immediate" (no sub immediate)
addu £t1,3t6,5t7 # Etl = $t6 + Ft7; add as unsigned integers
subu &t1, %16, 57 # 3t1 = #t6 + Ft7; subtract as unsigned integers
mult it3,3t4 # multiply 32-bit quantities in $t3 and %t4, and store &4-bit
# result in specisl registers Lo and Hi: (Hi,Lo) = $t3 = $t4
div £t5,%t6 # Lo = %t5 / $té (integer gquotient)
# Hi = %t5 mod %t& (remainder)
mfhi ita # move quantity in specisl register Hi to $t@: $t@ = Hi
mflo itl # move quantity in special register Lo to #tl: £tl = Lo
# wused to get at result of product or quotient
move Lt2,3t3 # Et2 = t3

Figure 2.10: Arithmetic operations
Control Structures

Branches: comparison for conditional branches is built into instruction

b target # wunconditional branch to program label target
beq £ta,itl,target # branch to target if %t2 = tl
blt £ta,itl,target # branch to target if $t8 < $t1
ble ita,ftl,target # branch to target if %t8 <= %tl
bet £ta,%tl,target # branch to target if $t9 > $tl
bge £t@,%tl,target # branch to target if %$t@ »>= %tl
bne tt@,$tl,target # branch to target if $té <> $tl

Figure 2.11: Control operations

Jumps
j target # wunconditional jump to program label target
ir 3 # Jump to address contained in $t3 ("jump register™)

Figure 2.12: Control operations 2

MIPS Instruction Types - source: (Lecture notes)

When MIPS instructions are classified according to coding format, they fall into four categories:
R-type, I-type, J-type, and coprocessor. The coprocessor instructions are not considered here.

15



The classification below refines the classification according to coding format, taking into
account the way that the various instruction fields are used in the instruction. The details of the
execution activities and the required control signal values depend almost entirely on the
instruction type in this classification.

Non-Jump R-Type

Immediate Arithmetic and Logic
Branch

Load

Store

Non-Register Jump

Register Jump

In the remainder of this web page, the instruction fetch and instruction decode activities are omitted since
they are the same for all instructions. The PC update activity only shows updates beyond the standard PC
increment (PC «— PC + 4).

R-type | op rs rt rd [shamt| funct
Arithmetic instruction format

I-type op rs It address/immediate
Transfer, branch, immediate.

J-type op target address
Jump instruction

Field size | 6 bits | Sbits | Sbits | Sbits | Sbits [ © bits

Figure 2.12: Instruction information

Non-Jump R-Type
Non-jump R-type instructions include all R-type instructions except jr and jalr. This includes all of the

integer arithmetic and bitwise operations, along with the non-branching compare instructions such as slt,
sgt, and seq. They use the R coding format. The opcode bits are all 0.

16



PC update: There is no update beyond the normal increment.

Source operand fetch: The two source operands are rs and rt.

ALU operation: The ALU operation is determined by the function field.
Memory access: There is no memory access for data.

Register write: The result from the ALU is written to rd.

Immediate Operand

Most immediate operand instructions perform arithmetic or logical operations using one operand
that is coded into the instruction. The immediate operand group also includes the comparison
instructions slti and sltiu and the lui instruction. Immediate operand instructions use the I coding
format.

PC update: There is no update beyond the normal increment.

Source operand fetch: The two source operands are rs and the immediate field. For all instructions
except sltiu the immediate field is sign extended. For sltiu the immediate field is zero extended.
This instruction is not considered in Patterson and Hennessey.

ALU operation: The ALU operation is determined by the opcode.

Memory access: There is no memory access for data.

Register write: The result from the ALU is written to rt.

Branch

Branch instructions conditionally branch to an address whose distance is coded into the instruction.
Branch instructions use the I coding format.

e PC update: If the branch condition is true (see ALU operation), PC «— PC + 4 + (sign-extended
immediate field)<<2.

Source operand fetch: The two source operands are rs and rt.

ALU operation: The source operands are subtracted for comparison.

Memory access: There is no memory access for data.

Register write: There is no register write.

3. EXPERIMENTAL PROCEDURE
3.1 Equipment used
1. Personal Computer
2. Modelsim
3. Lecture slides and ICAs

17



4. Online resources
3.2 Project Procedure Description

3.2.1. Task 1: Implementation of individual blocks for single-cycle MIPS processor

1. When it comes to designing a MIPS processor, it's always good to start off with individual blocks
required rather than trying to implement it all together.

2. The first glance of implementation on the MIPS processor is focused on the single cycle because
it is easier to debug if there are any errors in individual blocks at the beginning.

3. Therefore, the processor is divided into small modules as follows:

ALU

ALU_Control

Branch Adder

Control Unit

Data Memory

Instruction Memory

Jump Calc

o

Program Counter
Register File

S EFR Mo Ao o

Sign_Extend
Mux
i.  Operand mux

~

ii. Pc mux
iii.  Reg file mux
iv.  Write_back mux
1. Processor_top: which is the top module to connect all the modules for single-cycle MIPS
Processor.
4. Once all the modules are connected via the top module, there will be simulations that will be
analyzed to check if there are any errors with individual modules before moving to the next stage
of the process, forwarding and pipelining.

3.2.2. Task 2: Implementation of Forwarding logic to transform into pipeline logic
1. Once configured the single-cycle MIPS processor from task 1, we will go ahead and implement
the forwarding logic by implementing the following modules:

a. IFID

b. IDEX

c. EXMEM
d. MEMWB

18



Once these modules are completed, then we will configure the processor_top module accordingly
to use these blocks for forwarding logic.

Once done, simulate the results and check if there are any errors in individual modules and
overall wave outputs.

3.2.3. Task 3: Implementation of Hazard Control unit to detect any hazards

As mentioned under the theoretical section of this report, while doing forwarding, we will
encounter hazards along the way:.

Therefore, in this step of the project, we have implemented hazard control module to detect any
hazard found

If it does, then we will generate “bubbles” to make sure pipelining is successfully operating with
no problem.

3.2.4. Task 4: Simulations

Once at this stage, the 5-stage pipelined MIPS processor design is complete

Now we are doing simulations and testing the instructions listed in the project manual to see if we
are getting correct results and our processor is doing what we want.

The findings for this step will be under the Analysis section.

3.2.5. Task 5: Implementation of the processor on FPGA

At this stage of the project, we will upload the processor onto the FPGA, specifically the
DE2-115 development board.

We will test our instructions one by one and check our results

It must be noted that we will use FPGAs memory instead of registers while testing our processor.

3.3 Project Execution

3.3.1. Task 1: Implementation of individual blocks for single-cycle MIPS processor

ALU: ALU stands for Arithmetic Logic Unit, which is a fundamental component of a computer's central
processing unit (CPU). The ALU is responsible for performing arithmetic and logical operations on

binary numbers.

19



The arithmetic operations include addition, subtraction, multiplication, and division, while the logical
operations include AND, OR, NOT, and XOR. The ALU can perform these operations on single bits or on
groups of bits, depending on the instruction provided to it by the CPU.

The ALU has inputs for two binary numbers and a control signal that determines the operation to be
performed on the numbers. It then performs the operation and outputs the result. The result can be used by

other components of the CPU or stored in memory.

Now let’s take a look at the ALU Module that is implemented for this project:

module alu (
input [31:8] operand_a,
input [31:2] operand_b,
input [3: @] alu_operation,

output reg [31:9] alu_result,
output Zero

Figure 3.3.1: Initialize

We first must initialize our input, output and output reg ports just like given above, responsible for being a
placeholder for operand a, b and output. Then we will start initializing our arithmetic and logical
operations one by one with a case number assigned to them.

/f Calculate the multiplication result
assign mult_result = operand_a * operand_b;

/f perform the ALU operation based on the ALU control signal
always @ begin
case (alu_operation)
4'b@eea: begin // And
alu_result = operand_a & operand_b;
end
4'b@@8l: begin // Or
alu_result = operand_a | operand b;
end
4'bd818: begin /7 Add, ADDI, LMW, SW

alu_result = operand_a + operand b;

end
Figure 3.3.2: Cases
After initialization of each individual case that has a corresponding arithmetic, logic, or data flow
operation, our ALU module is completed. However, we still need to configure the control module that
will interact with the ALU module.

ALU CONTROL: The ALU Control Unit (ALU CU) is responsible for controlling the operation of the

Arithmetic Logic Unit (ALU) within a CPU. The ALU CU takes in the instruction from the CPU, which
specifies the type of arithmetic or logical operation that needs to be performed on the data.

20



The ALU CU is responsible for generating the appropriate control signals that direct the ALU to perform
the correct operation. It determines which arithmetic or logical operation needs to be performed, based on
the instruction provided, and generates the appropriate signals to control the ALU's operation.

The ALU CU is also responsible for deciding how the result of the operation should be handled, including
setting the appropriate condition codes to indicate whether the result is negative, zero, or positive.

module alu_control_unit (
input [31:8] instruction,
input [1: @] alu_op,
output reg [3: @] alu_comtrol

/f Extract the opcode and function fields from the instruction
reg [5:8] opcode, func;

f/f Select function field from the given instruction
always @ begin

func = instruction [5:8];
end

Figure 3.3.3: Initialize

The module takes in an instruction and an ALU operation code as input and produces a 4-bit output signal
called alu_control, which specifies the operation to be performed by the Arithmetic Logic Unit (ALU).

The code first extracts the opcode and function fields from the instruction. The opcode is a 6-bit field that
specifies the type of instruction, and the function field is a 6-bit field that specifies the specific operation
to be performed by the ALU for R-Type instructions.

The module then uses a case statement to determine the appropriate value for alu_control based on the

input instruction and alu_op. The case statement handles three cases based on the value of alu_op:

Finally, the module outputs the value of alu_control, which is used to control the operation of the ALU.
The value of alu_control specifies the specific operation to be performed by the ALU, such as addition,
subtraction, multiplication, or logical operations like AND, OR, and NOR.
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als for R, I and J-TYPE lnstructions

instructions as they don't have the function field

P911: begin
alu_control =
end
6'b181811: begin
alu_control =

: alu_comtrol = 4'b1111;

18: begin
alu_control = 4'b81

111: begin
alu_control =

818: begin

alu_control =

Mfhi

18: begin
alu_control =

11: begin
alu_control = 4'b8;

Figure 3.3.4: Control signals for R, I and J-TYPE instructions
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BRANCH ADDER: The "branch_adder" module performs a critical function in a processor's pipeline to
calculate the address of the next instruction after a branch instruction is executed. This module is used in
conjunction with other components of a processor's pipeline to ensure correct execution of branch
instructions.

module branch_adder (
input branch,
input [31:8] current_pc,
input [31:8] sipn_extend,
output reg [31:8] pc_branch

[/ Calculate the address for the branch

always @ begin
pc_branch = branch ? current_pc + sign_extend : "@;
end

endmodule

Figure 3.3.5: Branch adder

The module takes in three input signals: "branch", "current pc", and "sign_extend", and produces an
output signal "pc branch", which is the address of the next instruction to be executed after a branch
instruction is encountered.

The "branch" signal is a single bit that indicates whether a branch is being taken or not. The "current pc"
signal is a 32-bit input that represents the current program counter (PC), which is the address of the
current instruction being executed. The "sign extend" signal is a 32-bit input that represents the
sign-extended immediate value of the branch instruction.

The module uses an "always" block to calculate the address of the next instruction after a branch. If
"branch" is high, indicating that a branch is being taken, the module adds the "sign _extend" value to the
"current_pc" value to calculate the address of the next instruction. If "branch" is low, indicating that a
branch is not being taken, the module sets the "pc_branch" value to '0'.

The output signal "pc branch" is a 32-bit value that represents the address of the next instruction to be

executed after a branch. If the branch is taken, the value of "pc_branch" will be equal to "current_pc" plus
the "sign_extend" value. If the branch is not taken, the value of "pc_branch" will be 0.

23



DATA MEMORY: This module essentially implements a simple memory unit where data can be written
to or read from specific memory locations based on an address input.

module data_memory {
input clk,
input [31:8] address,
input [31:8] write_data,
input mem_write,
input mem_read,
cutput reg [31:8] read_data

reg [31:8] RAM [©:1823];

J/f Initial value of the memory (for testing purposes)
i ial begin
f/ RAM [182] = 32'hOBRBORFF;

read and write operation (The write operation gets priority over the read operation)
begin
if (mem_write) begin
RAM [address] = write_data;
end

end
end

endmodule

Figure 3.3.6: Data memory

This code defines a module for a data memory unit in a digital system. The module has a synchronous
interface consisting of an address input (address), a write data input (write data), and read/write control
signals (mem_read and mem_write) that are triggered by a clock signal (clk). The module also has an
output read_data which represents the data read from the memory location specified by the address input.

The module implements the memory using an array of 1024 32-bit registers (RAM), initialized to zero.
The address input is used to index the RAM array to perform memory read or write operations. When
mem_write is asserted, the write data input is written to the memory location specified by the address
input. When mem _read is asserted, the read data output is updated with the data stored in the memory
location specified by the address input.
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INSTRUCTION MEMORY: The instruction_memory module provides an interface for a processor to
read instructions from a memory based on a specified address.

module instruction_memory (
input ock input (
input
output reg [31:8] dinstructi

reg [7:8] mem[@:4895];
initial begin

f R-TYPE
[3 ],mem[2 ],mem[1 ],mem[8 ]}
em[7 ],mem[& ],mem[5 ],mem[4 ]}
[11],mem[18] ,mem[2 ],me
[15],mem[14] ,mem[13] ,mem[
em[19] ,mem[18] ,mem[17] ,mem[16] }
smem[22
smem[26]

always @ begin
instruction = {mem[address+3], mem[address+2], mem[address+1], mem[address+8]};
end

endmodule

Figure 3.3.7: Instructions

The instruction_memory module is a memory unit that stores instructions for a processor. It has three
inputs:

1. clk: a clock signal

2. address: a 32-bit input representing the memory address to read from

3. instruction: a 32-bit output representing the instruction read from the memory
The module uses a reg array called mem to store the instructions. The initial values of this array are set in
the initial block of the module. Each instruction is stored as a 32-bit value in the mem array.
The always block in the module is triggered whenever the address changes. It reads the 32-bit instruction
stored in the mem array at the address specified by address, and assigns this instruction to the instruction
output. This means that the instruction output will always contain the instruction stored at the memory
address specified by address.
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JUMP CALCULATION: Calculates the target jump address and determines whether the jump should be
taken or not.

module jum_calc(
input [31:2] old_pc,
input [25:8] target_address,
input Jump,
output reg [31:8] jump_pc

always @ begin
jump_pc = {jump) ? {old pc[31:28], target_address, 2'b@8} : '@;

B=_

end

endmodule

Figure 3.3.7: Jump calculation

The old pc input is the current address of the instruction being executed. The target address input is the
26-bit address of the instruction to which the program should jump. The jump input is a signal that
determines whether the jump should be taken.

The jump pc output is the computed target address of the jump instruction. The module uses the jump
signal to decide whether to take the jump or not. If the jump signal is asserted, the module constructs the
jump address by concatenating the upper 4 bits of the current address (old pc[31:28]) with the 26-bit
target address (target address) and appending 2 bits of zero (2'b00) to the least significant end. Otherwise,
the module sets jump pc to zero.

26



PROGRAM COUNTER: The program_counter module is responsible for keeping track of the program
counter (PC) for a processor. The program counter is a register that stores the address of the current
instruction being executed, and it is updated after each instruction is executed.

module program_counter (
input C
input reset input (a
input 31: n, updated pc
output reg [31: pc_adder,
output reg [31: pc_out

ut <= 32"da;

end else begin
pc_out <= pc_in;
end
end

endmodule

Figure 3.3.8: Program counter

The module has four ports: clk, reset, pc_in, pc_adder, and pc out. clk is the clock signal for the
processor, reset is the reset signal, pc_in is the updated program counter value, pc_adder is the program
counter for the next instruction to be executed, and pc out is the program counter for the current
instruction being executed.

The always @(posedge clk or negedge reset) block handles the clock and reset signals. When reset is
active low, the pc_out is set to 0. Otherwise, the pc_out is set to the updated program counter value pc_in
during the positive edge of the clk signal.

The always @* block is a combinational logic that calculates the pc_adder value by adding 4 to pc_out.

This value is used to determine the address of the next instruction to be executed after the current
instruction.
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REGISTER FILE: A register file is a collection of registers that are used in a digital circuit to
temporarily store and manipulate data during computation. The registers can be accessed by the circuit's
control unit, which retrieves data from the registers, performs arithmetic or logical operations on the data,
and stores the results back into the registers.

module register fi [
input f ff clock input (active-high)
input [4: @] i
input [4: @]
input [4: @]
input [31: write_data,
input reg_write,
output [31:8] read data 1,
coutput [31:8] read data 2

reg [31:2] registers[@:31];

f/ initial wvalues of the registers (for testing purposes)
ial begin
isters [1]

=te

(posedge clk) begin
write) begin
registers[write_register] <= write_data;
end

Figure 3.3.9: Register file
The module has the following inputs and outputs:

Inputs:

clk: the clock input signal.

read_register 1: a 5-bit input signal that specifies the first register to be read.

read register 2: a 5-bit input signal that specifies the second register to be read.
write_register: a 5-bit input signal that specifies the register to be written to.

write data: a 32-bit input signal that specifies the data to be written to the register.

reg_write: an input signal that specifies whether the write operation is to be performed.
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Outputs:
e read data 1:a 32-bit output signal that contains the data read from the first register.
e rcad data 2:a 32-bit output signal that contains the data read from the second register.

The module contains a 32-bit array of registers called "registers", with one register for each of the 32
possible register addresses. The initial values of the registers are set in an "initial" block, which is used for
testing purposes.

The "always" block is triggered by the positive edge of the clock signal. If the "reg_write" signal is high,
the data specified by the "write data" signal is written to the register specified by the "write register"
signal.

The "assign" statements are used to assign the data read from the specified registers to the "read data 1"
and "read data 2" output signals.

REGISTER FILE MUX: The reg_file mux module is a multiplexer that selects the destination register
for a write operation in a MIPS processor's register file based on the instruction being executed.

module reg file_mux (
input [31:8] instruction,
input

assign mux_output = reg dst ? instruction[28:16] : instructiom[15:11];

endmodule

Figure 3.3.10: Register file mux

The module takes in a 32-bit instruction signal and a control signal reg_dst. The reg_dst signal determines
which of two fields in the instruction contains the destination register number. If reg_dst is high, then bits
20-16 of the instruction contain the register number, otherwise bits 15-11 are used. The module outputs
the selected register number on a 5-bit signal mux_output.
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SIGN EXTEND: "sign _extend" takes a 16-bit input "in_data" and extends the sign bit (the leftmost bit)
to fill the remaining 16 bits, creating a 32-bit output "out data".

module sign_extend(
input [15:8] in_data,
cutput [31:8] out_data

3
) =
£ 3

assign out_data = { {16{in_data[15]}}, in_data };

endmodule

Figure 3.3.11: Sign extend

The sign bit is typically used to indicate whether the number is positive or negative. If the sign bit is 0, the
number is positive; if it is 1, the number is negative. In a two's complement system, the sign bit is also
used to represent the magnitude of the number.

The code uses a concatenation operator ({ }) to create a 32-bit value. The first argument is an array of 16
copies of the sign bit (in_data[15]), which is used to fill the upper 16 bits of the output. The second
argument is the original 16-bit input (in_data), which is used to fill the lower 16 bits of the output. The
resulting 32-bit output is then assigned to "out_data".

PROGRAM COUNTER MUX: PC (program counter) multiplexer selects the next program counter
address. It has five inputs and one output.

module pc_mux {
input [31:8] pc_in,
input branch,
input Jump,
input ZEro,
input [31:8] jump_pc,
input [31:8] jump_address
output [31:8] imem_addre

gn imem address = (pc_in == '@) ? pc_in : (branch & zero)} 2 jump_address : (jump) ? jump pc : pc_in;

endmodule

Figure 3.3.12: PC Mux

The pc_in input is the current program counter address, which is the address of the instruction to be
executed next. The branch input indicates whether the current instruction is a branch instruction or not.
The jump input indicates whether the current instruction is a jump instruction or not. The zero input is the
result of the ALU's zero flag, which indicates whether the previous ALU operation resulted in a zero
value. The jump pc input is the program counter value that should be used if the current instruction is a
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jump instruction.The jump_address input is the jump target address, which is computed based on the
instruction's offset value.

The imem_address output is the selected program counter address that should be used to fetch the next
instruction. It is computed based on the current program counter address, branch condition, jump
condition, and jump target address. If pc_in is zero, the output is also set to zero. Otherwise, if the current
instruction is a branch instruction and the zero flag is set, the output is set to the jump target address. If
the current instruction is a jump instruction, the output is set to the jump program counter address.
Otherwise, the output is set to the next sequential program counter address.

OPERAND MUX: Operand mux implements a multiplexer that selects between two input operands
based on a control signal alu_src. If alu_src is high, then the output operand b out is set to the immediate
value immediate, otherwise it is set to the value of the second input operand b. This multiplexer is
typically used in a CPU's datapath to select between two sources of operands for an arithmetic or logical
operation, depending on the instruction being executed.

module operand_mu
input [31:8] operand_b,
input [31:8] immediate,
input alu_src,
output [31:8] operand_b_out

alu_src ? immediate : operand_b;

endmodule

Figure 3.3.13: Operand mux
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WRITE BACK MUX: This module implements a multiplexer (mux) used for selecting data to be written
back to a register in a processor's write-back stage. The module has three inputs: read data, alu_result,
and mem_to_reg, and one output write_data. The read data input represents the data read from memory
in the memory access stage, alu result is the output of the arithmetic and logic unit (ALU) in the
execution stage, and mem _to reg is a control signal that determines whether the output of the memory
access stage or the output of the ALU is selected for writing back to a register.

module write_back_mux
input [31:8] read_data,
input [31:8] alu_result,
input mem_to_reg,

output [31:8] write_data

assign write_data = mem_to_reg ? read _data : alu_result;

endmodule

Figure 3.3.14: Write back mux

The write_data output of the module is set to read data if mem to_reg is asserted (i.e., is equal to 1),
otherwise it is set to alu_result. This mux is used to select the correct data to be written back to a register
in a processor's write-back stage, depending on whether the instruction requires data from memory or the
output of the ALU.
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CONTROL UNIT: The control unit takes an instruction as input and generates various control signals
based on the opcode and function fields of the instruction.

The module defines output signals for reg dst, branch, jump, mem read, mem to reg, alu op,
mem_write, alu_src, and reg_write. These signals are used to control other parts of the processor, such as
the register file, ALU, and memory.

module comtrol_unit (
input [31:8] instruction,
output reg reg dst,
output branch,
output jump,
output reg mem_read,

output rej mem_to reg,
output 1: @] alu_op,
output mem_write,
output alu_src,
output reg reg_write

Figure 3.3.15: Initialize

The control unit extracts the opcode field from the instruction and uses it to determine which instruction
type it is dealing with: R-Type, [-Type, or J-Type. It then sets the control signals accordingly.

f/ Extract the opcode and function fields from the instruction
reg [5:8] opcode;

J/f Shuffle unit
always @ begin

opcode = instruction [31:26];
end

J//{ comtrol signals for R, I and J-TYPE instructions
always
case {opcode)
£ R-Type
6'bO0BABY: begin
reg_dst = 1'b@;
branch 1'be;
Jump 1'ba;
mem_read = 1'b@;
mem_to reg 1"ba;
alu_op 2'b18;
mem_write 1'ba;
alu_src 1"ba;
reg_write 1'bl;
end

Figure 3.3.16: R-type instruction
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This part of the code is defining the values of various control signals based on the opcode field of the
input instruction. These control signals are used to enable or disable various components of the processor
during the execution of the instruction.

The case statement checks the value of the opcode variable and executes the corresponding code block. In
this particular code block, which corresponds to R-Type instructions, the control signals are set as
follows:

e reg dst: This signal indicates whether the instruction writes to a register or not. In this case, it is
set to 0, indicating that the instruction does not write to a register.

e branch: This signal indicates whether the instruction is a branch instruction. In this case, it is set
to 0, indicating that the instruction is not a branch instruction.

e jump: This signal indicates whether the instruction is a jump instruction. In this case, it is set to 0,
indicating that the instruction is not a jump instruction.

e mem read: This signal indicates whether the instruction performs a memory read operation. In
this case, it is set to 0, indicating that the instruction does not perform a memory read operation.

e mem to reg: This signal indicates whether the data read from memory should be written to a
register or not. In this case, it is set to 0, indicating that the data should not be written to a register.

e alu op: This signal indicates the operation that should be performed by the ALU. In this case, it is
set to 2'b10, indicating that the ALU should perform a subtraction operation.

e mem_write: This signal indicates whether the instruction performs a memory write operation. In
this case, it is set to 0, indicating that the instruction does not perform a memory write operation.

e alu src: This signal indicates whether the second operand of the ALU should come from the
immediate field or the second register file. In this case, it is set to 0, indicating that the second
operand should come from the second register file.

e reg write: This signal indicates whether the instruction writes to a register or not. In this case, it is
set to 1, indicating that the instruction writes to a register.
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@: begin f/ ADDI

branch
Jump
mem_read
mem_to reg
alu_op

6'b1eea11: begin /S LW

reg_dst 1'bl;
branch

Jump

mem_read

mem_to rep

alu_op

mem_write

1'ba; alu_src
alu_s 1'b1; reg write
reg write 1'bl; end
end 6'b181811: bepgin f/ SW
6'bBAE1BA: begin // reg_dst 1'bl;
reg_dst = branch
branch = Jump
j@p__ = mem_read
—ELTED = mem_to_reg
alu_op
mem_write

mem_to_reg
alu_op

mem_write
alu_src

reg_write
end

Figure 3.3.17: I-type instruction

This is a block of code within the always block that assigns control signals to various outputs based on the
value of the opcode signal, which determines the type of instruction being executed.

For example the BEQ instructions, the code sets the following signals:

reg_dst to 1'b0, indicating that this instruction does not specify a destination register
branch to 1'bl, indicating that this instruction is a branch instruction

jump to 1'b0, indicating that this instruction is not a jump instruction

mem_read to 1'b0, indicating that this instruction does not read from memory
mem_to_reg to 1'b0, indicating that this instruction does not write to memory
alu_op to 2'b01, indicating that the ALU operation for this instruction is subtraction
mem_write to 1'b0, indicating that this instruction does not write to memory

alu_src to 1'b0, indicating that the second operand of the ALU operation comes from the register
file
e reg write to 1'b0, indicating that this instruction does not write to a register.
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PROCESSOR TOP MODULE: This module is an implementation of a processor's datapath, containing
several sub-modules for the various stages of the processor's operation, such as instruction fetch, decode,
execute, and memory access. Each sub-module is set to be interconnected using several input and output
wires, which are used to pass data and control signals between modules.

Here are some of the key sub-modules and wires in this design:

e PC Selection MUX: selects between the output of the branch adder, jump calculator, and
instruction memory to determine the next address to fetch from

e Program Counter: generates the next address to fetch from, based on the output of the PC
Selection MUX
Instruction Memory: reads the instruction at the current address specified by the Program Counter
Control Unit: decodes the instruction and generates control signals for the rest of the datapath,
such as whether to read from or write to memory or registers

e Register File MUX: selects between the destination register specified by the instruction and a
register specified by the Control Unit
Register File: reads from or writes to the register file based on the input signals
ALU Control Unit: generates the appropriate ALU operation based on the instruction and control
signals
Sign Extend: extends the immediate value in the instruction to a full 32-bit value
Branch Adder: computes the branch address based on the current PC and the sign-extended
immediate value in the instruction

e Jump Calculator: computes the jump address based on the current PC and the immediate value in
the instruction

In summary, all of the modules that had been created so far for the single-cycle processor, come all

together and get wired in this module to be interconnected with one another to pass the data, address, and
values generated by the instructions.
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3.3.2. Task 2: Implementation of Forwarding logic to transform into pipeline logic
1. Since the single-cycle MIPS processor from task 1, we will go ahead and implement the
forwarding logic by implementing the following modules:

IF_ID MODULE: This module is responsible for storing the fetched instruction and its associated
program counter value in registers so that they can be passed to the next stage of the pipeline.

module IFID
input clk,
input reset,
input flush,
input 31:@] instruction,
input pc_in,
output reg instruction_ifid,

=
output reg [31:8] pc_ifid

e clk} begin

‘res flush) begin
instruction_ifid <= "8;
pc_ifid €= "8;

end else begin
instruction_ifid <= instruction;
pc_ifid €= pc_in;

end

end

endmodule

Figure 3.3.18: IF/ID Module

The inputs to the module are clk, reset, flush, instruction, and pc_in. The clk input is a clock signal that is
used to synchronize the operations of the module. The reset and flush inputs are used to reset and flush
the pipeline, respectively. The instruction input is the 32-bit instruction fetched from memory, and the
pc_in input is the program counter value associated with the fetched instruction.

The module has two outputs: instruction_ifid and pc_ifid. These are both 32-bit registers that store the
instruction and program counter values, respectively, in the instruction fetch/decode stage of the pipeline.

The module uses an always block that triggers on the positive edge of the clk signal. If either the reset or

flush inputs are asserted, the registers are reset to zero. Otherwise, the values of instruction and pc_in are
loaded into instruction_ifid and pc_ifid, respectively.
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ID_EX MODULE: The IDEX stage takes the instruction fetched in the
decodes it, preparing it for execution in the Execute stage.

module IDEX (

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
output
output
output
output
output
output
output
output
output
output
output
output
output
output

m m m

m M m M m
m m M mmimMmiMmhim:MmmM@ ioMmmMmimMmiMm

m M mom

clk,
reset,
flush,
reg_dst,
branch,
Jump,
mem_read,
mem_to_reg,
alu op,
mem_write,
alu src,

reg_write,

cperand_a,

1 ocperand b,

instruction_ifid,
pc_ifid,
wh_add
reg_dst_idex,
branch_idex,
jump_idex,
mem_read_idex,
mem_to reg idex,
alu_op_idex,
mem_write idex,
alu_src_idex,
reg_write id
operand_a_id
rand_b_idex,

instruction_idex,

1 pc_idex,

wh_address_idex

Figure 3.3.19: IDEX initialization

Instruction Fetch stage and

The module takes several input signals representing various control signals and data from the IFID stage
and provides the necessary control signals and data for the Execute stage. The inputs include clk for the

clock, reset for reset, flush to clear the pipeline in case of a branch misprediction, instruction_ifid and
pc_ifid to receive instruction and program counter from the previous stage, and operand a and operand b

to receive data from the register file, among others.

The output signals are derived from the inputs after some computations and include instruction idex

which carries the decoded instruction, pc idex which carries the program counter for the current
instruction, and operand a idex and operand b idex which carry the operands for the current instruction.

Other output signals include various control signals for
execution such as reg_write_idex, mem_read idex, mem_ write idex, and alu_op_idex, among others.
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if (reset | flush) begin
reg_dst_idex
branch_id
Jump_idex
mem_read_idex
mem_to_reg idex
alu_op_id
mem_write_idex
alu
reg_write_idex
operand_a_idex
operand_b_idex
instruction_idex
pc_idex
wh_address_idex
else begin
reg_dst_idex
branch_idex
jump_idex
mem_read_idex
mem_to_reg ldex
alu_op_idex 3 _op;
mem_write_idex <= mem_write;
alu_src_idex

reg_write_idex

operand_a_idex = operand_a;
operand_b_idex = operand_b;
instruction_idex <= instruction_ifid;
pc_idex = pc_ifid;
wh_address_idex <= wb_address;

Figure 3.3.20: IDEX always module
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EX MEM MODULE: The EXMEM module is a module that represents a stage in a pipelined processor.
Specifically, this module represents the execution-to-memory stage of the pipeline, where results from the
execution stage are written to the memory stage.

module EXMEM (
input clk,
input reset,
input reg_dst_idex,
input branch_idex,
input jump_idex,
input mem_read_idex,
input mem_to_reg idex,
input alu_op_idex,
input mem_write
input
input reg_write_id
input 31:8] operand_a_id
input 31:8] operand_b_idex,
input 31:8] instruction_idex,
input 31:8] alu_result,
input Iero,
input 31:8] pc_idex,
input : @] wb_address_idex,
output reg_dst_exmem,
output branch_exmem,
output jump_exmem,
output mem_read exmem,
output
output
output
output
output
output
output
output
output
output
output
output

]

mem_to_reg exmem,
alu op exmem,
mem_write exmem,
alu src_exmem,
reg write exmem,
operand_a_exmem,

m M M m mom

operand_b_exmem,

instruction_exmem,
alu_result exme

ZEro_exmem,

m m m m m m

pC_exmem,
wh_address_exmem

mmommmim:om:imMm:imMm:iMma:mimMm:mimMmMmim"

1]

Figure 3.3.21: EXMEM initialization

The module has several inputs, including control signals from the previous instruction
decode-to-execution stage (IDEX), as well as the result of the arithmetic/logic unit (ALU) operation, the
program counter (PC), and the address of the register being written to (wb_address). There are also
several outputs, which are the same control signals and data values but are passed on to the next stage of
the pipeline (the memory-to-writeback stage, or MEMWB).

40



The always block is a synchronous always block that is sensitive to the rising edge of the clock signal
(posedge clk). When the reset input is asserted, all output registers are reset to zero. Otherwise, the output
registers are updated with the input values on the rising edge of the clock.

always @{posedge clk) begin
if (reset) begin
reg_dst exmem

jump_exmemn

mem_read exmem

mem_to reg exmem

alu_op_exmem
rite_exmem

reg_write_exmem
operand_a_exmen
operand_b_exmem
instruction_exmem
alu_result_exmem
ZEro_exme

wh_address_exmem
elze begin
reg_dst exmem <= reg_dst_idex;
branch_exmem branch_id
jump_exmem jump_idex;
mem_read_exmem mem_read_idex;
mem_to reg exmem mem_to_reg_idex;
alu_op_exmem alu op ic
mem_write_exmem mem_write idex;
C_eXmem alu_src_id
rite_exmem reg_write_idex;
operand_a_exmen pperand_a_
operand_b_exmem
instruction_exmem instruction_idex;
alu_result exmem alu result;
Zero_exmemn Zero;
pC_EXmem pc_idex;
wh_address_idex;

Figure 3.3.22: EXMEM always block

The always block is executed on the positive edge of the clock signal (@(posedge clk)), and it
synchronously transfers the input signals from the previous pipeline stage (IDEX) to the current pipeline
stage (EXMEM). The transfer is controlled by a reset signal, which sets all the output registers to zero
when asserted.
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When the reset signal is not asserted, the values of the input signals are assigned to the output registers.
The output registers store the control signals and data values that are needed by the next pipeline stage to
perform the memory access operation or to calculate the next instruction address.

Each output register corresponds to a control signal or data value, and it is assigned the value of the
corresponding input signal. For example, the reg_dst exmem output register stores the control signal that
indicates whether the destination register for the result of the ALU operation is the register file or the
immediate value, and it is assigned the value of the reg dst idex input signal. Similarly, the
alu_result exmem output register stores the result of the ALU operation and is assigned the value of the
alu_result input signal.

MEM_WB MODULE: The purpose of this stage is to write data back to the register file or memory,
completing the execution of the instruction that was started in the previous pipeline stage.

module MEMWE (
input clk,
input reset,
input reg_dst_exmem,
input branc
input Jump_
input mem_read_
input mem_to_reg_sume
input
input
input
input
input 31:8] operand_a_e
input :8] operand_b
input 31:@] instruction exmem,
input 31:8] alu_result exmem,
input
input
input
input
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output

m m

branch_memwb,
Jump_memwb ,
mem_read memwb ,
mem_to_reg memwb,
alu_op_memwb,
mem_write memwb,
alu_src_memwb,
reg_write memwb,

m m M mm

cperand_a_memwb,
operand_b_memwb ,
instruction_memwb,
alu result_memwb,
Zero_memwh ,
read_data_ memwb,

m m m mm

pc_memwb ,
wh_address_memwb

m rm m
I:"! I:"! I:"! mmmmimiMmoMmimMmimMm:om@\:mmmMmPimm

Figure 3.3.23: MEMWSB initialization
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The always @(posedge clk) block is a synchronous design that is triggered by the positive edge of the
clock signal. If the reset input is high, then all the output signals are reset to zero. Otherwise, the output
signals are updated to match the corresponding input signals from the previous pipeline stage.

The input signals from the previous pipeline stage include the results of memory reads, the result of an
ALU operation, and various control signals that determine what operation should be performed in the
current stage. The output signals are used to write data back to the register file or memory, depending on
the instruction that was executed in the previous stage.

always

branch_memwb
Jump_memwh
mem_read_memwb
mem_to reg memwb
alu_op_memwb
mem_write memwh
alu_src_memwb
reg_write memwb
operand_a_memwb
operand_b_memwb
instruction_memwb -
alu_result memwb
Zero_memwb

read data_ memwb

pc_memwb

wh_address_memwb

else begin

reg_dst_memwb <= reg_dst_exmem;
branch_memwb <= branch_exmem;
Jump_memab £= jump_exmem;
mem_read memwb <= mem_read_exmem;
mem_to reg memwb

alu_op_memwb

mem_write_memwh

alu_src_memwb

reg_write memwb

operand_a_memwb N
operand_b_memwb <= operand_b_exmem;
instruction_memwb instruction_exmem;

alu_result _memwb <= alu result_ exmem;
Zera_memwb <= ZEero_exmem;
read_data_memwb <= read_data;
pc_memwb <= pC_exmem;
wh_address_memwb <= wb_address_exmem;

Figure 3.3.24: MEMWB always block
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UPDATING PROCESSOR TOP MODULE: After completing all individual blocks required for the
pipeline logic, we must interconnect the wires within the top module to make it work. Therefore, we have
updated the previous “single-cycle processor top” module to now operate as a forwarding supported
pipeline processor.

PIPELINE CONMECTION WIRES

f/ if/id stage variables
wire [31:8] instruction_ifid;

Figure 3.3.25: IFID Wires

These two lines declare wire variables instruction_ifid and pc_ifid with 32-bit widths. They will be used
to pass data between the IF (instruction fetch) stage and the ID (instruction decode) stage in your top-level
module.

The instruction_ifid wire will carry the 32-bit instruction fetched from memory during the IF stage to the
ID stage for decoding and execution.

The pc_ifid wire will carry the 32-bit program counter value for the next instruction to be fetched during
the IF stage. It is passed to the ID stage so that it can be used to calculate the address of the next
instruction in memory to be fetched.

The module below are responsible for wiring the required input/output ports of the id/ex stage in our top
module.

fex stage variables
reg_dst_idex;
branch_idex;
jump_idex;
mem_read_idex;
mem_to_reg_idex;
alu_op_idex;
mem_write_idex;

alu_src_id
reg_write_id
operand_a_id
operand_b_id
instruction_idex;
pc_idex;

wire [4: 8] wb_address_idex;

Figure 3.3.26: IDEX Wires
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These wires represent various signals that are used in the ID/EX stage of the pipeline in a processor
design.

reg_dst idex: Selects the destination register for the writeback stage (either rt or rd)
branch_idex: Indicates if the current instruction is a branch

jump_idex: Indicates if the current instruction is a jump

mem_read_idex: Indicates if the current instruction is a memory read operation
mem_to reg idex: Selects the data source for the writeback stage (either memory or ALU)
alu_op_idex: Specifies the type of operation to be performed by the ALU in the EX stage
mem_write_idex: Indicates if the current instruction is a memory write operation

alu_src_idex: Selects the second operand for the ALU in the EX stage (either rt or immediate
value)

reg_write_idex: Indicates if the current instruction is a register write operation

operand a idex: The value of the first operand for the ALU in the EX stage

operand b _idex: The value of the second operand for the ALU in the EX stage

instruction_idex: The current instruction being executed

pc_idex: The current program counter value for the current instruction being executed
wb_address_idex: The register address to be written back to in the writeback stage.

The module below is responsible for wiring the required input/output ports of the ex/mem stage in our top
module.

Jjump_exmem;
mem_read_exmem;
mem_to_reg_exmem;
alu _op exmem;
mem_write_exmem;

,_,
et

alu_src_exmem;

reg_write_exmem;

cperand_a_exmem;

operand_b_exmem;

instruction_exmem;
alu_result_exmem;

Lo B B B
Iad

Zero_exmem;
pC_exmen;
wh_address_exmem;

Figure 3.3.27: EXMEM Wires
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During this stage, the processor executes the instruction that was fetched and decoded in the previous
stages. It calculates the address of memory for any memory read or write operations, performs any
necessary arithmetic or logical operations, and updates any registers that need to be written to.

The signals and data carried by these wires are used to perform these operations and to pass data and
control signals between the various stages of the pipeline. For example, alu_result exmem carries the
result of the arithmetic or logical operation that was performed during this stage, and wb_address _exmem
contains the address of the register to which the result should be written.

Now, the final stage of pipelining is the MEM\WB stage, which is given below and wired in top module.

/S memfwb stage variables
wire reg_dst_memwb;
wire branch_menmmb;
wire jump_memab;

wire mem_read memwb ;
wire mem_to_reg memwb;
wire alu op memmwb;
wire mem_write_memwb;
wire [1: glu_src_memwb;
wire reg_write_memwb;
wire [31:8] operand_a memwb;
wire 8] operand_b memwb;
wire :8] instruction_memmwb;
wire [31:8] alu_result_memwh;

wire Zero_memah;

wire [31:0] read_data_memwb;
wire [31: pC_memsb;
wire [4: wh_address_memwb;

Figure 3.3.28: MEMWB Wires

These are the wire declarations for the "mem/wb" stage variables in the processor. These wires are used to
transfer the results of the memory stage and write back stage of the processor.

Here's what each of these wires is used for:

e reg dst memwb: A control signal that determines whether the destination register for the current
instruction is rt (register 2) or rd (register 1).

e branch memwb: A control signal that indicates whether the current instruction is a branch
instruction.

e jump memwb: A control signal that indicates whether the current instruction is a jump
instruction.

e mem read memwb: A control signal that indicates whether the current instruction is a memory
read instruction.
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mem_to_reg_memwb: A control signal that determines whether the value to be written back to
the register file comes from the ALU or memory.

alu_op_memwb: A control signal that specifies the operation to be performed by the ALU in the
write-back stage.

mem_write_ memwb: A control signal that indicates whether the current instruction is a memory
write instruction.

alu_src_memwb: A control signal that determines whether the second operand to the ALU comes
from

the register file or is an immediate value.

reg_write_memwb: A control signal that indicates whether the current instruction writes back to
the register file.

operand a_memwb: The first operand to the ALU.

operand b _memwb: The second operand to the ALU.

instruction_memwb: The current instruction being executed.

alu_result memwb: The result of the ALU operation performed in the write-back stage.
zero_memwb: A control signal that indicates whether the result of the ALU operation was zero.
read data memwb: The data read from memory in the memory stage.

pc_memwhb: The program counter value for the current instruction in the write-back stage.
wb_address memwb: The address of the register to be written to in the write-back stage.
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2. Once we have all 5 stages of pipeline interconnected and wired in our top processor module, we
will move on to the next step of the process in which we have to identify their registers under
their specified parts.

IF/ID PIPELIME REGISTER |,

IFID if id (
.clk
.reset
-flush
.instruction

.pc_in
.instruction_ifid
.pc_ifid

Figure 3.3.29: IF/ID Pipeline registers

This code block instantiates a module called IFID and connects its input and output ports to the
corresponding signals in the top-level module.

The IFID module takes the following inputs:

clk: a clock signal used to synchronize the internal operations of the module
reset: a signal used to reset the module to its initial state
flush: a signal used to flush the instruction in the current pipeline stage when a branch
misprediction occurs
instruction: the current instruction being fetched from memory
pc_out: the current program counter value
instruction_ifid: the instruction that will be passed from the instruction fetch stage to the
instruction decode stage

e pc ifid: the program counter value that will be passed from the instruction fetch stage to the
instruction decode stage

The IFID module has internal logic to latch the input values on each clock cycle, store them in registers,
and pass them to the output ports for use in the next stage of the pipeline.
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EX PIPELIME

IDEX id_ex (
LClk
.reset
fFlush
.reg_dst {reg_dst
.branch {branch
. jump { jump
.mem_read {mem_read
.mem_to_reg {mem_to_reg
.alu_op {alu_op
.mem_write {mem_write
.alu_src T
.reg_write {reg_write
.operand_a {operand_a
.operand_b {operand_b ),
Jdnstruction_ifid (instruction_ifid),
.pc_ifid {pc_ifid
.wb_address { mux_output
.reg_dst_idex (reg_dst_idex S/ do not need to forward this to next sta
.branch_idex (branch_idex
Jjump_idex { jump_idex
.mem_read_idex (mem_read_idex
.mem_to_rep_idex (mem_to_reg_idex
.alu_op_idex (alu_op_idex
.mem_write idex i
.alu_src_idex
.reg_write_idex
.operand_a_idex (operand_a_idex
.operand_b_idex (operand_b_idex
Jdnstruction_idex (instruction_idex
.pc_idex (pc_idex

.wh_address_idex (wb_address_idex

'y

Figure 3.3.30: ID/EX Pipeline registers

This code block is instantiating an instance of the IDEX module and connecting its inputs and outputs to
various signals from the parent module.

The IDEX module represents the second stage of a pipelined processor and stands for "Instruction
Decode/Execute". It takes the instruction and program counter from the previous stage (IF/ID) and
decodes the instruction, generates the necessary control signals, and prepares the operands for the ALU.
The resulting output of this stage includes the updated control signals, ALU operands, and other relevant
data, which are forwarded to the next stage (EX/MEM) and also saved in latches for forwarding to
subsequent stages.

Therefore, the code block is passing several inputs such as clk, reset, flush, instruction, and pc_out to the
IDEX module, as well as receiving several outputs such as reg dst exmem, branch exmem,
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jump _exmem, mem read exmem, mem to reg exmem, alu op exmem, and so on. These outputs
represent the necessary control signals and ALU operands for the next stage (EX/MEM) to execute the
decoded instruction. Additionally, some of the outputs are saved in latches for forwarding to later stages
in the pipeline.

EM PIPELINE REGISTER

EXMEM ex_mem (

.c1k

.reset
reg_dst_idex
.branch_idex
Jjump_idex
.mem_read_idex
mem_to_reg_idex
alu_op_idex
mem_write_ide

branch_idex
ump_idex
mem_read_idex
em_to_reg_idex
1u_op_idex
(mem_write_idex

1u_src_idex

eg_write_idex
perand_a_idex
perand_b_idex

Alu_src_idex
.reg_write_idex
.operand_a_1i
.operand_b_idex
.Anstruction_idex nstruction_ide;
alu_result 1u_result

LZETD Iero

.pc_idex C_idex

wb_address_idex b_address_idex
.reg_dst_exmem
.branch

eg dst_exmem
HIMEm ranch
.jump_exmem
.mem_read_exmem
.mem_to_reg exmem
.alu_op_exmem
.mem_write_exmem
.alu_src_exmem
.reg_write_exmem
.operand_a_exmem
.operand_b_exmem
JAnstruction_exmem
.alu_result exmem
~ZEro
«pC

1_address_exmem

£Xmem

Figure 3.3.31: EX/MEM Pipeline registers
This code block instantiates an "EXMEM" module that represents the third stage of a pipelined processor.

The module takes in various control and data signals from the previous pipeline stage (IDEX), as well as
the current clock and reset signals.
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The EXMEM module performs the execution of the instruction, such as arithmetic, logical or comparison
operations, on the operands received from the previous pipeline stage. It then forwards the results to the
next pipeline stage (MEMWB). It also generates control signals such as whether a branch should be taken
or not based on the instruction's opcode.

The signals passed between the modules include control signals such as register destination, whether to
branch or jump, whether to read or write memory, ALU operation, and whether to write to the register
file. Data signals include the two operands, the instruction to be executed, the ALU result, whether the
result is zero, the program counter, and the address to write back to the register file.

MEM/WE PIPELINE REGISTER |,

MEMWE mem_whb (
.clk
.reset
.reg dst_exmem
.branch
.Jjump_exmem
.mem_read_exmem
.mem_to_reg e
.alu_op_exmem
.mem_write e em_write
.alu_src 1u src
.reg_write e

anem ),
.instruction_ex struction_exmem),
.alu_result exmem 1u_result_exmem )
. ZEro_exXmem
.read_data
. pC_exmemn em
wb_address_ex b_address_exmem )
.reg dst_memwb eg dst_memwb
.branch_memwb ranch_memwb
.Jjump_memh ump_memwh
.mem_read_memwb em_read memwb
.mem_to_reg memwb em_to_reg_memwb )
alu_op_ memwb 1u_op memwb
.mem_write memwb em_write memwb
alu_src_memsb 1u_ src_memwb
.reg_write memwb eg_write _memwb
.operand_a_memwh

ruction_memwb
.alu_result memwb 1u result_memwb )
Zero_memwb ero_memwh
ad_data_ memwb
. pC_memwb _memwh
wb_address_memwb

Figure 3.3.32: MEM/MWB Pipeline registers
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This code block is defining a module called MEMWB which has inputs and outputs for various signals
used in a computer's memory and write-back stages.

The inputs to the module include the clock signal (clk), reset signal (reset), various control signals such as
whether to write to a register (reg_write_exmem) or perform a memory write (mem_write_exmem), and
data signals such as the ALU result (alu_result exmem) and read data (read_data).

The outputs from the module include signals that will be used in the next pipeline stage (reg_dst memwb,
jump_memwb, etc.), the data that will be written to memory (write_data memwb), and signals indicating
whether a memory read was performed (mem read memwb) or whether the ALU result was zero
(zero_memwb).

This module is typically used in a pipelined CPU architecture, where each stage of the pipeline is

responsible for a different part of the instruction execution process. In this case, the MEMWB module is
responsible for handling the memory access and write-back stages.
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3.3.3. Task 3: Implementation of Hazard Control unit to detect any hazards
Pipelining in a processor allows multiple instructions to be executed simultaneously, which
increases the overall throughput of the processor. However, pipelining introduces new hazards
that need to be controlled, such as data hazards and control hazards.

Data hazards occur when instructions in the pipeline require data from a previous instruction that
has not yet completed. This can cause stalls in the pipeline, which reduces the throughput of the
processor. A hazard control unit is responsible for detecting and resolving data hazards by
forwarding data from the output of one pipeline stage to the input of another pipeline stage, or by
inserting pipeline stalls when necessary.

Control hazards occur when the outcome of a conditional branch instruction is not yet known
when the next instruction enters the pipeline. This can cause the pipeline to execute incorrect
instructions, which can result in incorrect program behavior. A hazard control unit can detect and
resolve control hazards by inserting pipeline stalls or by predicting the outcome of conditional
branch instructions.

In summary, a hazard control unit is necessary in pipelining to ensure correct and efficient
execution of instructions in the pipeline by detecting and resolving data hazards and control
hazards.

module hazard_detection_unit (
input clk,
input [4:8] rsl_addr,
input [4:8] rs2_addr,
input mem_read_idex,
input reg_write,
input reg_write_idex,

input [31:8] instruction_ifid,
input [31:8] instruction_idex,

output reg stall

/f variables needed for different pipes
reg [4:8] if id_rd, id ex_rd;

Figure 3.3.33: Hazard control initialization

This Verilog module implements a hazard detection unit for a pipeline processor. The module has the

following inputs:

clk: a clock signal used for synchronization

rsl_addr: the address of the first source register

rs2_addr: the address of the second source register

mem_read_idex: a signal indicating whether a memory read is performed in the ID/EX pipeline
stage

reg_write: a signal indicating whether a register write is performed in the pipeline
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e reg write idex: a signal indicating whether a register write is performed in the ID/EX pipeline
stage
instruction_ifid: the instruction in the IF/ID pipeline stage
instruction_idex: the instruction in the ID/EX pipeline stage

The module has one output:
e stall: a signal indicating whether a stall is required in the pipeline

The hazard detection unit is responsible for detecting data hazards in the pipeline by checking whether the
source registers of an instruction being fetched in the IF/ID stage match the destination registers of an
instruction being decoded in the ID/EX stage. If a hazard is detected, the hazard detection unit asserts the
stall signal, which stalls the pipeline and prevents further instructions from being fetched until the hazard
is resolved.

begin

instruction_idex [28:16];
begin

of the destination register of the ex/mem pipe instruction
gin
rd = instruction_ifid [15:11];

if there is any hazard found + bubble generation logic
#* begin

stall = 1'b8;

instruction's dependency
d == rs1_addr &% reg write_idex) begin

rs2_addr & reg write_idex) begin

46 endmodule

Figure 3.3.34: Hazard control always blocks

In the block of code given above, the module uses another always block to check for data hazards
between the current instruction in the ID/EX stage and the previous memory-read instruction in the
MEM/WRB stage. If a dependency is detected between the source operands of the current instruction and
the destination register of the previous memory-read instruction, stall is set to 1 to insert a bubble into the
pipeline.

54



FLUSH UNIT: The flush unit in a MIPS processor is responsible for clearing or "flushing" the contents
of the instruction pipeline in certain situations. Specifically, it is used when a branch or jump instruction is
encountered, as these instructions may cause the processor to execute instructions out of order, which can
lead to incorrect results.

module flush_unit |
input ZEro,
input branch_idex,
input Jump_idex,
output reg flush

ck whether we need to FLUSH the Fetch and Decode Stage Pipes
r Branch and Jump Instructions)

: 1'bé@;

endmodule

Figure 3.3.35: Flush unit

The code block defines a flush unit module that takes in inputs zero, branch_idex, and jump_idex, and
outputs flush.

The always @* block uses a ternary operator to assign the value of flush. If zero is asserted (1) and

branch_idex is asserted (1), or if jump idex is asserted (1), then flush is set to 1, indicating that the
pipeline should be flushed. Otherwise, flush is set to 0, indicating that the pipeline should not be flushed.
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3.3.4. Task 4: Simulations

1. In order to simulate our working process, we must write a test bench to be used while running
modelsim built in simulation tool to generate clk.

initial begin
clk a;
1;
a;

always #5 clk = ~clk; // Toggle clk every 5 time units

// Instantiate DUT (Design Under Test) module
processor_top mips_processor(

.clk  (clk ),
.reset (reset)

-
L

endmodule

Figure 3.3.36: Test bench simulation

This code block is a test bench module for a MIPS processor design. It instantiates the DUT (Design
Under Test) module, which is the actual processor implementation that needs to be tested. The test bench
provides the clock and reset signals to the DUT and sets their values according to a predefined sequence
of events.

The clk signal is a clock input that is toggled every 5 time units using an always block with a delay of 5
time units. The reset signal is an active low reset input that is set to 1 initially and then set to 0 after 15
time units using delay operator #.

The processor top is the module being tested, which takes the clk and reset signals as inputs. By
instantiating the processor top module and providing the input signals, the test bench can test the

functionality of the MIPS processor implementation.

The outcome of the simulations could be found under the Analysis section.
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4. ANALYSIS

4.1 Experimental Results

Let’s start with first uploading our files onto the modelsim environment to be run and simulated.

M ModelSim - INTEL FPGA STARTER EDITION 10.5b
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help
N.ZHoE IBRBED . AT N | & i g |
El-2f -
*¥| Project - C:/Users/puyaf/OneDrive /Desktop/174 proj/Mew folder (2)MIPS
TlName _\lsmmsiType |Drde‘|‘~‘lodiﬁed |
Verilog 05/02/2023 06:35:15 ...
|=] alu_control.v " Veriog 1 05/02/2023 06:34:35 ...
|=] branch_adder.v " Verlog 2 05/02/2023 06:35:37 ...
|=] contral_unit.v " Veriog 3 05/02/2023 06:37:45 ...
|=] data_memory.v f Verilog 4 05/02/202309:14:22 ...
[£] ExMEM.v o Verlog 5 04/30/202309:13:42 ...
|=] flush_unit.v f Verilog & 05/02/2023 06:41:19 ...
|=] forward_a_mux.v { Verilog 7 05/02/2023 06:41:39 ...
|=] forward_b_mux.v { Verilog &8 05/02/2023 06:41:43 ...
|=] forwarding_contral... { Verilog 9 05/02/2023 06:41:46 ...
|=] hazard_detection_... ,/' Verilog 10 05/02/2023 06:42:37 ...
|£] IDEX.w ,/' Verilog 11 05/02/2023 05:40:26 ...
[] FD.w W Verlog 12 05/02/202305:49:09 ...
|£] instruction_memer... -.f Verilog 13 05/02/2023 09:43:10 ...
|=] jump_cale.v -.f Verilog 14 05/01/2023 02:57:48 ...
=] MEMWBE.v -( Verilog 15 0430/2023 09:15:10 ...
|=] operand_musx.w -f Verilog 16 04/23/2023 10:15:30 ...
|57 pe_mux.v -f Verilog 17 04/29/2023 02:38:52 ...
|- processor_top.v -f Verilog 18  05/02/2023 09:45:58 ...
|=] program_counter.... -.f' Verilog 19 05/02/2023 06:43:46 ...
|21 reg_file_mux.v -.f' Verilog 20 04/28/2023 03:25:42 ...
|=] register_file.v -.f' Verilog 21 05/02/2023 03:45:38 ...
|=] sign_extend.v ,/' Verilog 22 04/27/202302:24:59 ..,
|=] test_bench.v ,/' Verilog 23 05/02/2023 06:44:39 ...
|21 write_back_mux.v ,/' Verilog 24 05/02/2023 06:44:43 ...

Figure 4.1.1: Uploading .v files

As could be seen above, we uploaded all of the fully developed modules including the top module to a file
in modelsim, named work. This file will be physically located in the computer disk as well.
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We will then simulate our test bench using ModelSim’s simulation tool, and add waves to the
corresponding modules to analyze the working processor.

Add_Structure Tools Layout Bookmarks Window

Hep
i o-MET| R R F R = || cobmiorat psicosamme El

J % a4 o aH__p» W hE S Jg«mgqg. Search: j;a@ﬁ“ f*‘«f-g%:;:,giu EIL T B ‘
B8 Memory Lt FEE] it EEE]
*[instance: [Range [Depth_[width [ ] | ]
& [test_bench/mips p... [0:4095] 409 8
& fest_benchfmips p... [1:31] 2w
& [test_benchmips p... [0:1023] 1024 32

XJrinds | ), | L] searchFor v | M@ P

EEE
]

EJ SINTIAL
 SuWAYSEL te -
2 #vsim_copacity Capaciy Statstics

Figure 4.1.2: Running the simulation tool

For the simulation tool, we must select the test bench file and click simulate. The program will
automatically add a wave and have the required files ready to be used under the simulation wave tool. We
will first select the simulation to be at a Sps time cycle to analyze it step by step.

In order to check the simulation process, we must select the modules that will be necessary from our list,
in this case we will select the ALU module first.

&l sim - Default
Y|Instance _\|Deswgn unit ‘Demgn unit type |Top Category |V|5|blllty |T0ta| coverage
DU Instance
o FALWAYS#12  test bench  Process - +acc=...
& FINITIAL#6 test_bench  Process - +acc=...
:r_rl mips_processor... processor_,.. Module DU Instance +acc=...
_T_r_l alu alu Module DU Instance +acc=...
_T_r_| alu_cu alu_control... Module DU Instance +acc=...
_T_r_| ba branch_adder Module DU Instance +acc=...
_T_,h_l cu control_unit  Module DU Instance +acc=...
_T_r_| dm data_memory Module DU Instance +acc=...
_T_r_| ex_mem EXMEM Module DU Instance +acc=...
‘T"_-I fa_mux forward_a... Module DU Instance +acc=...
_»Fr_l fo_mux forward_b... Module DU Instance +acc=...
_T_r_| fou forwarding... Module DU Instance +acc=...
_T_r_l flush_u flush_unit Module DU Instance +acc=...
++m hdu hazard_det... Module DU Instance +acc=...
_T_r_| id_ex IDEX Module DU Instance +acc=...
_T_r_| if_id IFID Module DU Instance +acc=...
_T_r_l im instruction... Module DU Instance +acc=...
_T_r_| jc jump_calc Module DU Instance +acc=...
_T_r_| mem_wb MEMWE Module DU Instance +acc=...
_+I-_,~_| opmux operand_mux Module DU Instance +acc=...
_T_r_l pc program_c... Module DU Instance +acc=...
-T—'“-l pc_mux pc_mux Module DU Instance +acc=...

Figure 4.1.3: Selecting alu module

Once selected, we will add waves to the module and using our wave simulation tool, we will run the
processor in a 5ps time cycle at first to check how it interacts with the overall processor. The next step of
the process at this point is to click Run.
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Testing instruction ADD:

Jtest_bench/mips_processor fimfdk HiZ

Jtest_bench/mips_processor fimfaddress 00000000000000000000000000000000

Figure 4.1.4: Instruction fetch of add

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00E80820; // add to be fetched first. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00E80820 in
binary is 000000 00111 01000 00001 00000 100000

As we know, add is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00111 = operand a, 01000 = operand b, 00001 = destination register,

function: 100000

Figure 4.1.5: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [7]’s value 7, and
adding it to register [8]’s value 6. The resulting add operation will be 13.

Jtest_bench/mips_processorfrffread_reqister_1
Jtest_bench/mips_processor/rffread_register_2

Jtest_bench/mips_processor/rffwrite_data 00000000000000000000000000000000
ftest_bench/mips_processor rffreq_write St1
B—*. [test_bench/mips_processor/rfiread_data_1 00000000000000000000000000000111
. ftest_bench/mips_processor/rfiread_data_2 00000000000000000000000000000110

EF
B [ftest bench/mips_processor/rffwrite_register 00000
[+ 204

-

Figure 4.1.6: Register values simulation
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In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 7 and 8, with values 7 and
6 respectively. Which is correct.

B¢ [ftest_bench/mips_processorfalufoperand_a 00000000000000000000000000000111 )
B¢ ftest_bench/mips_processor/alufoperand_b 00000000000000000000000000000110 I

ftest_bench/mips_processor falu/alu_operation -
|

|
[

—

. [test_bench/mips_processor alufalu_result 00000000000000000000000000001101 fooo..] 1|
# .. [test_bench/mips_processor falu/zero St
B [test_bench/mips_processor/alu/mult_result 0000000000000000000000000000000. .,

|

Figure 4.1.7: ADD Operation ALU

Now moving to the execution stage of our process, we have ADD operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting 13 from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 1101 at alu_result register defined above. Therefore it is in fact
properly working because 6 + 7 = 13.

Now let's take a look at Write back data at our Write back mux.

£ [jtest_bench/mips_processorfwb_mux/read_data |rooooooo 0000
Jtest_bench/mips_processor fwb_mux/alu_result | 00000000000000000000000000001101

£ [test_bench/mips_processor fwb_mux/mem_to... |5t0
.. ftest_bench/mips_processor fwb_mux/fwrite_data |00000000000000000000000000001101

a1 MNow

Figure 4.1.8: ADD Operation WB
It is writing back the result 1101.

Now let's check if at the end of all 5 stages our result is written back at register file module,

ftest_benchmips_processor/rfidk
ftest_bench/mips_processor/rffread_register_1
ftest_bench/mips_processor/rffread_register_2

ftest_bench/mips_processor/rffwrite_register
ftest_bench/mips_processor/rfiwrite_data
ftest_bench/mips_processorrffreq_write

Figure 4.1.9: WB to register file module

Yes, it did in fact write back the 01101 to the write_data location of the register module. Which will
satisfy the working instruction test for ADD instruction.
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Testing instruction AND:

£ [ftest_bench/mips_processor fim/dk HiZ
£ [test_bench/mips_processor fim/address 00000000000000000000000000000 100 {00... 100/, |

B“. [test_bench/mips_processor fim/finstruction 00000000010000110000100000100100 f00... 100, 7

Figure 4.1.10: Instruction mem AND

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430824; // and to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430824 in
binary is 000000 00010 00011 00001 00000 100100

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 100100

alues of the registers (For testing purposes)

Figure 4.1.11: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 7, and
anding it to register [3]’s value 3. The resulting operation will be 3.

£ jtest_bench/mips_processor/rffread_register_1 00010

£ [Jtest_benchfmips_processorfrffread_register 2 |00011

£ Jtest_benchfmips_processor/rffwrite_register 00000

B¢  [test_bench/mips_processor/rffwrite_data 00000000000000000000000000000000
£  [test_bench/mips_processorjrffreq_write St1

B-“. [test benchfmips_processor/rffread_data_1 00000000000000000000000000000111
EB—“. Jtest_bench/mips_processor/rffread_data_2 00000000000000000000000000000011

Figure 4.1.12: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 7 and
3 respectively. Which is correct.
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[+ ;’ ftest_bench/mips_processor (alu foperand_a 00000000000000000000000000000111
B¢ /test_bench/mips_processorfalufoperand_b 00000000000000000000000000000011
[+ 25

ftest_bench/mips_processor jalufalu_operation 0000
B“.. /test_bench/mips_processor falu/alu_result 00000000000000000000000000000011
#. ftest_bench/mips_processor falu/zero St
B [test_bench/mips_processor/falu/mult_result 00000000000000000000 0000000000000

Figure 4.1.13: AND Operation ALU

Now moving to the execution stage of our process, we have AND operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting3 from our signals. We can observe that our first fetched instruction from instruction
memory is resulting in 0011 at the alu result register defined above. Therefore it is in fact properly
working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

= _’ ftest_bench/mips_processor jdm/address 00000000000000000000000000000011
PB{ [test bench/mips_processor/dmfwrite_data 00000000000000000000000000000111
£

ftest_bench/mips_processor fdm/mem_write
£ [ftest_bench/mips_processor/dm/mem_read
. [test_bench/mips_processor/dm/read_data

Figure 4.1.14: Data memory block

B [ftest_bench/mips_processorfwb_mux/alu_result  |00000000000000000000000000000011
£ ftest_bench/mips_processor fwh_mi em_to_reg |5t0
.. ftest_bench/mips_processorfwh_mux/write_data |00000000000000000000000000000011

Figure 4.1.15: Write back MUX

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

B Jjtest_bench/mips_processorfrffread_register_1
B jtest bench/mips_processor frffread_register_2

£ Jjtest_bench/mips_processor jrffwrite_register

00000000000000000000000000000011
£ ftest_bench mips_processor frffreq_write

Figure 4.1.15: Write back to register file

Yes, it did in fact write back the 0011 to the write_data location of the register module. Which will
satisfy the working instruction test for AND instruction.
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Testing instruction OR:

£  [test_bench/mips_processor fim/dk HiZ

-4  [test_bench/mips_processor fim/address 00000000000000000000000000001000 {00... 100, J00...
]
B-“. ftest_bench/mips_processor fimfinstruction 00000000010000110000100000100101 {00... Jool. fod...

Figure 4.1.15: Instruction fetch OR

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction32'h00430825; // or to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430825 in
binary is 000000 00010 00011 00001 00000 100101

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 100101

1 values of the registers (For

Figure 4.1.16: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 7, and
anding it to register [3]’s value 3. The resulting operation will be 3.

1};’* ftest_bench/mips_processorfrffread_reqister_1 {o0... Yool. Yoooio |
I}

B4 [test_bench/mips_processor/rffread_register 2 |00011 oo 01,

B4 [test_bench/mips_processor/rffwrite_register 00000

B4 Jtest_bench/mips_processor/rfjwrite_data 00000000000000000000000000000000
£ ftest_bench/mips_processor/rfireq_write St1

B—“. ftest_bench/mips_processor/rffread_data_1 00000000000000000000000000000111

EB—“.. jtest_bench/mips_processor/rffread_data_2 00000000000000000000000000000011

Figure 4.1.17: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 7 and
3 respectively. Which is correct.
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£ /test bench/mips_processor/falujoperand_a 00000000000000000000000000000111
£ [test_bench/mips_processorfalujoperand_b 00000000000000000000000000000011
£ [ftest_bench/mips_processorfalufalu_operation 0001

4. ftest_bench/mips_processorfalufalu_result 00000000000000000000000000000111
4., [test_bench/mips_processor falufzero Sto
B [test_bench/mips_processorfalu/mult_result 0000000000000000000000000000000000000000000000. ..

Figure 4.1.18: ALU Operation OR

Now moving to the execution stage of our process, we have OR operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting 7 from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 0111 at the alu_result register defined above. Therefore it is in fact
properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

:’ [test_bench/mips_processor fdm/fdk
B4 [test_benchfmips_processor/dm/address Q0000000000000000000000000000111
B4 [test_bench/mips_processor/dmfwrite_data 00000000000000000000000000000111

£ ftest_bench/mips_processor/dm/mem_write St
£ [ftest_bench/mips_processor fdm/mem_read
E“. [test_bench/mips_processorfdmjread_data

Figure 4.1.19: Data memory

[+ _’» Stest_bench/mips_processorfwb_mux/falu_result | 00000000000000000000000000000111
£ ftest_bench/mips_processor fwb_mux/mem_to_req |5t
B-—“. ftest_bench/mips_processorfwb_muxjwrite_data  |00000000000000000000000000000111

Figure 4.1.20: Write Back

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

B-£ [test_bench/mips_processor/rfiread_register_1
B-£ [jtest_bench/mips_processor/rfiread_register_2

B¢ ftest_bench/mips_processor/rfjwrite_register

Q0000000000000000000000000000111

Figure 4.1.21: Regfile write data

Yes, it did in fact write back the 0011 to the write_data location of the register module. Which will
satisfy the working instruction test for OR instruction.
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Testing instruction NOR:

Jtest_bench/mips_processor fimfdk HiZ

E
B4 [ftest bench/mips_processorfim/address 00000000000000000000000000001100

Jtest_bench/mips_processor fim/finstruction 00000000010000110000100000100111

Figure 4.1.22: Instruction fetch NOR

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430827; // nor to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430827 in
binary is 000000 00010 00011 00001 00000 100111

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 100111

isters (For testing purposes)

Figure 4.1.23: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

[+ _’ ftest_bench/mips_processor/rffread_reqister_1 00010
B [test_bench/mips_processor/rfjread_register_2 ooo11
£ ftest_bench/mips_processor frffwrite_register oooo1
£  [test_bench/mips_processor/rfiwrite_data 00000000000000000000000000001101

4 ftest_bench/mips_processorrffreg_write St1
B—“. ftest_bench/mips_processor/frfjread_data_1 00000000000000000000000000001001
B—“. ftest_bench/mips_processor/frfjread_data_2 00000000000000000000000000000010

Figure 4.1.24: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively. Which is correct.
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(= :_* ftest_bench/mips_processorfalufoperand_a 00000000000000000000000000001001
Jtest_bench/mips_proc rfalufoperand_b

_bench/mips_proc rfalufalu_operation 1000
_bench/mips_proc alufalu_result 11111111111111111111111111110100
_bench/mips_proc alufzero

B4 [ftest bench/mips_proc rfalufmult_result

Figure 4.1.24: ALU module for NOR

Now moving to the execution stage of our process, we have NOR operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 32b’111...10100 at the alu_result register defined above. Therefore it
is in fact properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

:_* ftest_bench/mips_processor fdm/dk St1
Jtest_bench/mips_proc rfdmfaddress 1111111111131131131311311113111110100
_bench/mips_proc fdm
_benchmips_proc
_bench/mips_proc dm/mem_read
B—“. ftest_bench/mips_proc rfdm/fread_data

1171171973733171323333331033130100

| A nem_to_reg |5t0
B-“. ftest_bench/mips_processorfwb_muxfwrite_data  |11111111111411111111111111110100

Figure 4.1.26: WB Mux for NOR

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Jtest_bench/mips_processorrffread_register_1 00010

ftest_bench/mips_proc ad_reqister_2 oooi1
ftest_benchfmips_processorrffwrite_register oooo1
ftest_bench/mips_processor/rffwrite_data 11111111111111111111111111110100

Jtest_bench/mips_processor frffreq_write

Figure 4.1.27: Write data register at the end for NOR

Yes, it did in fact write back the32b’111...10100 to the write_data location of the register module.
Which will satisfy the working instruction test for NOR instruction.
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Testing instruction SUB:

£  [Jtest_bench/mips_processor fim/dk HiZ

B4 [jtest_bench/mips_processor fimfaddress 00000000000000000000000000010000
[+ Jtest_bench/mips_processor fimfinstruction 000000000 10000110000100000100010

Figure 4.1.28: Instruction fetch for SUB

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430822; // sub to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430822 in
binary is 000000 00010 00011 00001 00000 100010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 100010

registers (For testing purposes)

Figure 4.1.29: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

[+ :’ Jtest_bench/mips_processor/rfiread_reqister_1 ooo10
B ftest_bench/mips_processorfrfjread_register_2  |00011
B¢ [ftest bench/mips_processor/rfiwrite_register Q0001
B¢ ftest_bench/mips_processor/rfiwrite_data 00000000000000000000000000000000

£ ftest_bench/mips_processorfrfjreg_write St1
B—*. [test_bench/mips_processor/rffread_data_1 0000000000000000000000000000 1001
B—*. [ftest_bench/mips_processor/rfiread_data_2 00000000000000000000000000000010

Figure 4.1.30: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively. Which is correct.
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MIpS_procCessor falljoperant

Jtest_bench/mips_processor falufoperand_b 00000000000000000000000000000010
Jtest_bench/mips_processor falu/alu_operation 0110
Stest_bench/mips_processor falu/falu_result 00000000000000000000000000000111

#,. [test_bench/mips_processor falu/zero St
B [test_bench/mips_processor/falu/mult_result 0000000000000000000000000000000000000000000000, ..

Figure 4.1.31: ALU Operation for SUB

Now moving to the execution stage of our process, we have SUB operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 111 = 7 at the alu_result register defined above. Therefore it is in fact
properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

[test_bench/mips_processorfdm/dk St1
[+} 29 ftest_bench/mips_processor/dm/address 00000000000000000000000000000111
B¢ ftest_bench/mips_processor/dmjwrite_data 00000000000000000000000000001001
£

ftest_bench/mips_processar fdm/mem_write St
£  ftest_bench/mips_processor/dm/mem_read St

B—“. ftest_bench/mips_processor/dmjread_data X

Figure 4.1.32: Data memory SUB

= :’ ftest_bench/mips_processor fwb_musxfalu_result | 00000000000000000000000000000111

4 [test_bench/mips_processorfwb_muxfmem_to_reg |5t0

00000000000000000000000000000111

B-“. ftest_bench/mips_processorfwb_muxfwrite_data

Figure 4.1.33: AWB Mux SUB

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Jtest_bench/mips_processorfrffread_register_1

Jtest_bench/mips_processorfrffread_reqister_2

Jtest_bench/mips_processor frffwrite_register
[+1 24 [test_bench/mips_processor rffwrite_data 00000000000000000000000000000111

Figure 4.1.34: Reg write back SUB

Yes, it did in fact write back the 000..111 to the write_data location of the register module. Which
will satisfy the working instruction test for SUB instruction.
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Testing instruction SLT:

£ [ftest_bench/mips_processor fim/dk HiZ
B¢ [ftest bench/mips_processorfimfaddress 00000000000000000000000000000000 tooochibo...

TATLY,

B—“. ftest_bench/mips_processorfimfinstruction  |00000000010000110000100000101010 :[u:u:uiu:uj...
]

Figure 4.1.35: Instruction fetch of SLT

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h0043082A; // sub to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h0043082A
in binary is 000000 00010 00011 00001 00000 101010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 101010

/f Initial values of the registers (For testing purposes)

Figure 4.1.36: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

[+ 29 [test_bench/mips_processor/rfiread_regis...
B [test_bench/mips_processor/rffread_regis...
B¢ /test_bench/mips_processor/rfiwrite_reqi...

£ Jtest_bench/mips_processor/rffwrite_data | 00000000000000000000000000000000
£ ftest_bench/mips_processor/rfireq_write al

E-“.. jtest_bench/mips_processor/rfjread_data_1 |00000000000000000000000000001001

E“. jtest_bench/mips_processor/rfjread_data_2 |00000000000000000000000000000010

Figure 4.1.37: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively. Which is correct.
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[+ ;, Jtest_bench/mips_processor falufoperand_a | 00000000000000000000000000001001
B+ [test_bench/mips_processor alufoperand_b |00000000000000000000000000000010
B [ftest_bench/mips_processorfalufalu_oper... |0111

B-—“. ftest_bench/mips_processorfalufalu_result  |00000000000000000000000000000000

#_, [test_bench/mips_processor falu/zero St1
B4 [jtest_bench/mips_processorfalu/mult_result |0000000000000000000000000000000000000...

Figure 4.1.38: ALU Operation for SLT

Now moving to the execution stage of our process, we have SLT operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 00.000 at the alu_result register defined above because 9 is not less
than 2. Therefore it is in fact properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

;_* ftest_bench/mips_processor fdm/dk St1
B [/test_bench/mips_processor/dm/address 00000000000000000000000000000000
B4 [test_bench/mips_processor/dm/write_data |00000000000000000000000000001001
£
E

Jtest_bench/mips_processor fdm/mem_write  |St0
Jtest_bench/mips_processor fdm/mem_read |5t0
B—“. ftest_bench/mips_processor/dmjread_data |

Figure 4.1.39: SLT for Data memory

B4 [test_bench/mips_processor/wb_mux/alu_... |00000000000000000000000000000000
4 [ftest_bench/mips_processor/wb_mux/me... |50
B—“. ftest_bench/mips_processorfwb_muxfwrit... |00000000000000000000000000000000

Figure 4.1.40: WB mux for Data memory

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

ftest_bench/mips_processor/rffread_reqis...
ftest_benchmips_processor rffwrite_regi...
ftest_bench/mips_processorrffwrite_data | 00000000000000000000000000000000

ftest_bench/mips_processor frffreq_write

Figure 4.1.41: Reg write back SLT

Yes, it did in fact write back the 000..000 to the write data location of the register module. Which
will satisfy the working instruction test for SLT instruction.
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Testing instruction DIV:

£ ftest_bench/mips_processor fim/dk HiZ

B¢ [ftest_bench/mips_processor fim/address 00000000000000000000000000000000
B—“. ftest_bench/mips_processorfimfinstruction  |00000000010000110000100000011010

Figure 4.1.42: Instruction fetch for DIV

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h0043082A; // sub to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h0043082A
in binary is 000000 00010 00011 00001 00000 101010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 011010

registers (For testing purposes)

Figure 4.1.43: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

[test_bench/mips_processorrffread_regis...
[test_bench/mips_processor frffread_regis...
Jtest_bench/mips_processor frffwrite_reqi...
ftest_bench/mips_processor frffwrite_data | 00000000000000000000000000000000

Jtest_bench/mips_processor frfjreg_write St1
« ftest_bench/mips_processor frffread_data_1 |00000000000000000000000000001001
B-“. ftest_bench/mips_processor/rfjread_data_2 |00000000000000000000000000000010

Figure 4.1.44: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively. Which is correct.
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[+ __* ftest_bench/mips_processorfalufoperand_a | 00000000000000000000000000001001
B¢ ftest_bench/mips_processor alujoperand_b
£ ftest_bench/mips_pr alufalu_oper...
B-“. jtest_bench/mips_pr alufalu_result

#, ftest_bench/mips_pr

B ftest_bench/mips_processor/alufmult_result
Figure 4.1.45: ALU Operation for DIV

Now moving to the execution stage of our process, we have a DIV operation between two operands
which had values hardcoded in the register file module to them. We have so far fetched the instruction,
and moved the register address with their corresponding values. Now let's check our simulation results
and see if we get the resulting values from our signals. We can observe that our first fetched instruction
from instruction memory is resulting in 00...100 at the alu_result register defined above because 9/2=4.5
and 4 is what it will be displayed. Therefore it is in fact properly working.

ftest_bench/mips_processor fdm/dk
ftest_bench/mips_proc rfdm /address
ftest_bench/mips_processorfdmfwrite_data
ftest_bench/mips_proc rfdmfmem_write
ftest_bench/mips_proc rfdm/mem_read
B-“. ftest_bench/mips_processor/dm read_data

Figure 4.1.46: Datamemory for DIV

B4 [jtest_bench/mips_p

4 [ftest_bench/mips_pros

Figure 4.1.47: WB mux for DIV

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Jtest_bench/mips_processorfrffread_regis. ..

ftest_bench/mips_pro
ftest_bench/mips_processor rffwrite_reg
[+ =9 ftest_bench/mips_processorrffwrite_data | 00000000000000000000000000000100

Figure 4.1.48: Reg write back DIV

Yes, it did in fact write back the 000..100 to the write data location of the register module. Which
will satisfy the working instruction test for DIV instruction.
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Testing instruction MUL:

4  ftest_bench/mips_processor fim/dk HiZ

B4 ftest_bench/mips_processor fim/faddress 00000000000000000000000000000000
B—“. ftest_bench/mips_processorfimfinstruction  |00000000010000110000100000011000

Figure 4.1.49: Instruction fetch for MUL

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430818; // MUL to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430818
in binary is 000000 00010 00011 00001 00000 011000

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,

function: 011000

ff Initial values of the registers (For testing purposes)
initial begi
1;

Figure 4.1.50: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Jtest_bench/mips_processor rffread_regis. ..
Jtest_benchfmips_processor rfjread_regis. ..
ftest_bench/mips_processor rffwrite_regi...

ftest_bench/mips_processorrffwrite_data | 00000000000000000000000000000000
Jtest_bench/mips_processor frfjreq_write St1

a ftest_bench/mips_processor frffread_data_1 |00000000000000000000000000001001

B—“. ftest_bench/mips_processorrfjread_data_2 |00000000000000000000000000000010

Figure 4.1.51: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively. Which is correct.
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[test_bench/mips_proc rfalufoperand_a

ftest_benchfmips_processorfalufoperand_b
ftest_bench/mips_processaralu alu_oper...
ftest_bench/mips_proc alufalu_result
« ftest_bench/mips_proc alufzero
[test_bench/mips_processorfalu/mult_result

Figure 4.1.52: ALU operation for MUL

Now moving to the execution stage of our process, we have a MUL operation between two operands
which had values hardcoded in the register file module to them. We have so far fetched the instruction,
and moved the register address with their corresponding values. Now let's check our simulation results
and see if we get the resulting values from our signals. We can observe that our first fetched instruction
from instruction memory is resulting in 00...10010 at the alu result register defined above because
9*2=18 and 18 is what will be displayed at alu_result. Therefore it is in fact properly working.

ftest_bench/mips_processar fdm/dk
ftest_bench/mips_proc rfdm /address
[test_bench/mips_processorfdmfwrite_data
[test_bench/mips_proc rfdmfmem_write

rfdm/mem_read

Jtest_bench/mips_pros
ftest_bench/mips_pro:
ftest_bench/mips_pro:

Figure 4.1.54: WB mux for MUL

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

ftest_bench/mips_processar frfjread_regis...

ftest_bench/mips_pr
ftest_bench/mips_processar i g
[+) =9 ftest_bench/mips_processor/rffwrite_data

Figure 4.1.55: Reg write back DIV

Yes, it did in fact write back the 000..10010 to the write_data location of the register #1 module.
Which will satisfy the working instruction test for MUL instruction.
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Testing instruction ADDI:

#  Jtest_bench/mips_processor fim,/dk HiZ

B¢ [ftest_bench/mips_processor fimfaddress 00000000000000000000000000000000
B-“. [test_bench/mips_processor fim/finstruction 001000000 100000 100000000000000 10

Figure 4.1.56: Instruction fetch for ADDI

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h20410002; // ADDI to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h20410002
in binary is 001000 00010 00001 0000000000000010

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

001000 = op code, 00010 = operand a, 00001 = destination register, Imm = 10.

: (For testing purposes)

Figure 4.1.57: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9.

00010
oooo1
000ooo
[test_bench/mips_processor frffwrite_data 00000000000000000000000000000000

ftest_bench/mips_processar frfjreg_write St1
« ftest_bench/mips_processorfrffread_data_1 00000000000000000000000000001001
—“. ftest_bench/mips_processor/rfjread_data_2 00000000000000000000000000000001

Figure 4.1.58: Register values simulation
In the figure above, we can observe that during the next cycle our instruction memory has been updated

with the corresponding register numbers and register data. It is reading register 2 and 1, with values 9 and
3 respectively. Which is correct.
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ftest_benchjmips_processor falufoperand_a 0000000000000000000000000000 1001
ftest_benchjmips_processor falufoperand_b 00000000000000000000000000000010
Jtest_bench/mips_processor falufalu_operation 0o10

[test_benchjmips_processor falu/falu_result 00000000000000000000000000001011

4, ftest_bench/mips_processor falufzero St
B* [ftest_bench/mips_processorfalufmult_result 00000000000000000000000000000000. ..

Figure 4.1.59: ALU operation for ADDI

Now moving to the execution stage of our process, we have an ADDI operation between an operand and
immediate value, which has values hardcoded in the register file module to them. We have so far fetched
the instruction, and moved the register address with their corresponding values. Now let's check our
simulation results and see if we get the resulting values from our signals. We can observe that our first
fetched instruction from instruction memory is resulting in 1011 at the alu_result register defined above
because 9+2=11 and 11 is what will be displayed at alu_result. Therefore it is in fact properly
working.

[+ _’ ftest_bench/mips_processor/dmfaddress 00000000000000000000000000001011
B [test_bench/mips_processor/dm/fwrite_data 00000000000000000000000000001001
4  [test_bench/mips_processor/dmfmem_write

4 [test_benchjmips_processorfdm/mem_read

B—“. ftest_bench/mips_processor/dmjread_data

Figure 4.1.60: Datamemory for ADDI

[test_bench/mips_processor/wb_
Jtest_bench/mips_processorfwb_mux/alu_result
Jtest_bench/mips_processor fwb_mux/mem_to_reg
00000020000000200000002000001011

Figure 4.1.61: WB mux for ADDI

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Jtest_bench/mips_processor frffread_register_2
Jtest_bench/mips_processor frffwrite_register
Jtest_bench/mips_processor frffwrite_data 00000000000000000000000000001011

Jtest_bench/mips_processor frfjreg_write

Figure 4.1.62: WB mux for ADDI

Yes, it did in fact write back the 000..1011 to the write_data location of the register #1 module.
Which will satisfy the working instruction test for ADDI instruction.
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Testing instruction BEQ:

£ ftest_bench/mips_processor fim/dk HiZ

B+ [ftest_bench/mips_processorfim/address Q0000000000000000000000000000000
[+] Jtest_bench/mips_processor fimfinstruction 00010000100001010000000000011001

Figure 4.1.63: Instruction fetch for BEQ

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h10850019; /BEQ to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h10850019
in binary is 000000 01000 01000 01010000000000011001

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 01000 = operand a, 01000 = destination register, Imm = 01010000000000011001.

[test_bench/mips_processor/pcfreset St
[test_bench/mips_processorfpc/fstall St
ftest_bench/mips_processor/pcfpc_in 0000000000000000000000000000 1100
ftest_bench/mips_processor/pcfpc_adder 00000000000000000000000000001100
ftest_benchmips_processor fpcfpc_out 0000000000000000000000000000 1000
ftest_bench/mips_processar fpc_mux/pc_in Q0000000000000000000000000001100
[test_bench/mips_processorfpc_mux/branch St
ftest_bench/mips_processorfpc_mux fjump St
[test_bench/mips_processor/pc_muxzero St
ftest_bench/mips_processor jpc_muxfjump_pc 00000000000000000000000000000000
[test_bench/mips_processor/pc_mux fjump_address 00000000000000000000000000 100001
00000020000000000030000000001100

Figure 4.1.64: PC for BEQ

B¢ ftest_bench/mips_processor/pc_mux/pc_in 00chodol
I}
ftest_bench/mips_processor fpc_mux/branch

£ ftest_bench/mips_processor fpc_mux fjump

Figure 4.1.65: PC_mux for BEQ

As could be seen above, once BEQ instruction is passed thru the PC Mux, the signal for branch goes
high, and will have a branch operation successfully conducted afterwards.
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1+ :_* ftest_bench/mips_processorfalufoperand_a Q0000000000000000000000000000 100

Jtest_bench/mips_processo jalujoperand b |0000000000000000000000000000 1000

st_bench/mips_pro or falufalu_operation
st_bench/mips_pro Jfalufalu_result 11737739731731132133331339339300
Jfalufzero St

orfalufmult_result | 00000000000000000000000000000000. ..

Jtest_bench/mips_processor ba/branch

ftest_bench/mips_pro jpafcurrent_ pc | 0000000000000000000000000000 1000
B-£ [ftest_bench/mips_processor/bafsign_extend 11001
B—“. [test_bench/mips_processorfbafpc_branch  |000000000000000 00000000000 100001

Figure 4.1.65: Branch calculation

The above figure shows how the branch is calculated in ALU module, and our branch adder
module’s current pc with sign extend and pc_branch signals which shows where to branch.
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Testing instruction J:

£  ftest_bench/mips_processorfpcfdk

£ ftest_bench/mips_processor fpcfreset

£ ftest_bench/mips_processor fpcfstall
B+ ftest_bench/mips_processorfpcfpc_in
B“. ftest_bench/mips_processor fpc/pc_adder
B-“. Jtest_bench/mips_processorfpcfpc_out
B [test_bench/mips_processor/pc_mux/pc_in

£  Jtest_bench/mips_processorfpc_mux/branch

ftest_bench/mips_processor fpc_muxjump

4  ftest_bench/mips_processor jpc_mux/zero
B [Jtest_bench/mips_processor/pc_mux/jump_pc
£ jtest_bench/mips_processor fpc_mux/fjump_address
B-“. Jtest_bench/mips_processorfpc_muxfimem_address
£ jtest_bench/mips_processorfjc/old_pc
B¢ Jjtest_bench/mips_processor fic/target_address

£ Jtest_bench/mips_processor ficjump

Figure 4.1.66: Jump instruction

00000000000000000000000000001100
00000000000000000000000000001100
0000000000000000000000000000 1000
00000000000000000000000000001100

00000000000000000000000000000000
00000000000000000000000000 100001
00000000000000000000000000001100
0000000000000000000000000000 1000
00100001010000000000011001

5t0

As we can see in the figure above, we will have our jump instruction fetch and execute. We will fetch the
instruction 32'h08000101; / JUMP. The 32 bit binary version of the instruction is given to us in the
simulation. If we translate it to binary and separate its section we will see that 32'h08000101 in binary is
000010 00000000000000000100000001

As we know, and is a J-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000010 = op code, Imm = 00000000000000000100000001.

[+ ;’ ftest_bench/mips_processor fpc_muxfjump_pc 00000000000000000000000000000000

&£ [test_bench/mips_processorfpc_mux/jump_address
B-“. ftest_bench/mips_processorfpc_mux/imem_address

£ [test_bench/mips_processor ficjold_pc
B¢ [test_bench/mips_processor fic/target_address
£ jtest_bench/mips_processor fic/jump

00000000000000000000000000 100001
00000000000000000000000000001100
00000000000000000000000000001000
00100001010000000000011001

5t0

Figure 4.1.66: Jump calculation

As we can see in the above figure, our module will calculate the target address and jump from the
previous PC value. Therefore, this instruction is working properly.
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Testing instruction LW:

#  Jtest_bench/mips_processor fim,/dk HiZ

B¢ [ftest_bench/mips_processor fimfaddress 00000000000000000000000000000000
B—“. ftest_bench/mips_processorfimfinstruction | 10001100010000010000000001100100

Figure 4.1.67: Instruction fetch for LW

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h8c410064; // LW to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h8c410064
in binary is 100011 00010 00001 0000000001100100

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:

100011 = op code, 00010 = operand a, 00001 = destination register, Imm = 0000000001100100.

Jtest_bench/mips_processorrffread_register_1

[+ =4 (test_bench/mips_processorrfiread_register_2
B ftest_bench/mips_processor/rfjwrite_register
[+ 2
E

Jtest_bench/mips_processor frffwrite_data 00000000000000000000000000000000
ftest_bench/mips_processorrfjreq_write St1
B—*. ftest_bench/mips_processor/rfiread_data_1 0000000000000000000000000000 1001
B-“. ftest_bench/mips_processor/rfjread_data_2 0000000000000000000000000000000 1

Figure 4.1.68: Register values simulation

As we can see in the figure above, we have our source register displayed under read registerl, which is
register 2. And our destination register at register 1.

[test_bench/mips_processorfalufoperand_a 00000000000000000000000000001001
B4  [jtest_bench/mips_processorfalufoperand_b 0000000000000000000000000 1100100
B4 [ftest_bench/mips_processaralu/alu_operation 0010

B—“. ftest_bench/mips_processor/alufalu_result 00000000000000000000000001101101
4, ftest_bench/mips_processor/falufzero St
B ftest_bench/mips_processor/alufmult_result 00000000000000000000000000000000000, ..

Figure 4.1.69: ALU for LW

Now moving to the execution stage of our process, we have an LW operation between an operand and
immediate value, which has values hardcoded in the register file module to them. We have so far fetched
the instruction, and moved the register address with their corresponding values. Now let's check our
simulation results and see if we get the resulting values from our signals. We can observe that our first
fetched instruction from instruction memory is resulting in 1011 at the alu_result register defined above
because 9+100=109 and 1101101 is what will be displayed at alu_result. Therefore it is in fact
properly working.
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Testing instruction SW:

Jtest_bench/mips_processor fimfdk

ftest_bench/mips_processar fimfaddress 00000000000000000000000000000000
4. ftest_bench/mips_processorfimfinstruction 10101100011000010000000001100100

Figure 4.1.70: Instruction fetch for SW

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'hAC610064; // SW to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'hAC610064
in binary is 101011 00011 00001 0000000001100100

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
101011 = op code, 00011 = operand a, 00001 = destination register, Imm = 0000000001100100.

Jtest_bench/mips_processor frffdk
Jtest_bench/mips_processorrffread_register_1

ftest_benchfmips_processorrffwrite_register
ftest_bench/mips_processor /rffwrite_data 00000000000000000000000000000000
Jtest_bench/mips_processor frffreq_write St
o ftest_bench/mips_processorfrffread_data_1 000000000000000000000000000000 10
[+ Jtest_bench/mips_processorrffread_data_2 00000000000000000000000000000001

E
[ B
B [ftest bench/mips_processorrffread_register_2
[+ 2
[+ B
E

Figure 4.1.71: Register values simulation

As we can see in the figure above, we have our source register displayed under read registerl, which is
register 2. And our destination register at register 1.

[+ __* ftest_bench/mips_processor falufoperand_a 00000000000000000000000000000010
B¢ [ftest_bench/mips_processorfalufoperand_b 0000000000000000000000000 1100100
B [ftest_bench/mips_processoralu/alu_operation 0010

B-“. ftest_bench/mips_processoralufalu_result 00000000000000000000000001100110

#_, [test_bench/mips_processor falu/zero St
B4 [jtest_bench/mips_processor/alu/mult_result 00000000000000000000000000000000000. ..

Figure 4.1.72: ALU for SW

We can observe that our first fetched instruction from instruction memory is resulting in 1011 at the
alu_result register defined above because 2+100=102 and 1100110 is what will be displayed at
alu_result. Therefore it is in fact properly working.
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mem_to_req
rite_data

Figure 4.1.73: WB Mux for SW

0000004e |XEXHEXHXXXXNNENEXXNEXEENXEXNXEEENE XXNEXXXENXEXXXEKXKEEXK
00000054 |xEXHEXHXXXXNNXENEXXNEXEENXENNEEENY XEXNEXXXENXEXXXEKXKENXK

00000058 |EXEEXEEENEENENENNNENEENNENNEEENY XENENNNENNENNENENNENY:
00000080 |EMHEMNEENNENENENNNENEENNENNEEENY EENENN NN NN NN NN

000000€E |00OO00000000000000000000000000010 XEEENNNEEINNKKEENKEEY
O000008C |yyyrrr e e NN N NN NN EENNY XHEEN NN NN E NN NN
00000072 |yyryrrrs e e MM NN NN NENNY  NE NN NN NN NN

goooooTs EEdtddttdtttdttdttttittdsttdstsdgiéttdittddttddssdssssy
nnnnnnTe

< vl
Figure 4.1.73: RAM results

As we can see, our RAM block and WB mux, will in fact include 000...10 results on the
corresponding RAM block of 102. Therefore, SW instruction is working properly.
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Testing instruction MFHI and MFLO:

The MFHI (Move From HI) and MFLO (Move From LO) instructions are used in MIPS assembly
language to retrieve the contents of the special-purpose registers HI (High) and LO (Low), respectively.
These registers are used for storing the high and low parts of the result when performing multiplication or
division operations in MIPS.

Here's a brief explanation of each instruction:
MFHI (Move From HI):

Syntax: mfhi rd

Operation: Copies the value from the HI register to the destination register rd.
Example: mthi $t0 copies the value of HI into register $t0.

MFLO (Move From LO):

Syntax: mflo rd

Operation: Copies the value from the LO register to the destination register rd.

Example: mflo $t1 copies the value of LO into register $tl.

These instructions are particularly useful when performing multiplication or division operations that
require a 64-bit result or when working with large numbers in MIPS assembly language.

4'be1€0: begin // MFHI
alu result = $hi;

end

A4"b8181: begin // MFLO
alu result = $lo;

end

Figure 4.1.74: MFHI & MFLO results

As could be seen from the Verilog code above, we have instantiated our hi and lo alu results accordingly,
Now let's ake a look at our ALU operation.

B¢ [ftest_bench/mips_processorfalujoperand_b 00000000000000000000000000000000
B¢ [ftest bench/mips_processorfzlufalu_operation 0100
—“. ftest_bench/mips_processor/falufalu_result Q0000000000000000000000000000000

B¢ [ftest_bench/mips_processor alufalu_operation 0101

Therefore, it is in fact passing the instruction MFHI and MFLO to our alu block successfully to
execute.
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Testing hazard:

In order to test our hazard detect unit, we will have two add operations back to back that will require the
first add operations result on the second operations. As we know, this won’t be possible until the first add
operation’s ALU result is successfully achieved by the processor. Therefore, we are expecting a stall
signal here.

4 ftest_bench/mips_processor fim,dk HiZ

B4 [ftest bench/mips_processorfim/address 00000000000000000000000000000000
[+ Jtest_bench/mips_processor fim/finstruction 00000000111010000000 100000 100000

Figure 4.1.75: First ADD operation

Our first operation is 32'hO0E80820 // ADD, as we know it is an R type operation. If we break this
instruction apart we will get: 000000 00111 01000 00001 00000 100000

000000 = op code, 00111 = operand a, 01000 = operand b, 00001 = destination register,
function = 100000.

In this operation we are adding the value of register [7] + register [8] and storing it in register [1].
Now let’s take a look our register file to see what the values in those registers are:

Figure 4.1.76: Register values

Now, let's take a look at our second ADD operation that will be fetched right after first ADD operation.

4 ftest_bench/mips_processor fim/dk HiZ

B  [ftest_bench/mips_processor fimfaddress 00000000000000000000000000000100
(= ftest_bench/mips_processor fim/finstruction 000000000010 10000000 100000100000

Figure 4.1.75: Second ADD operation

Our second operation is 32'h00280820; / ADD, as we know it is an R type operation. If we break this
instruction apart we will get: 000000 00001 01000 00001 00000 100000

000000 = op code, 00001 = operand a, 01000 = operand b, 00001 = destination register,
function = 100000.

Now, since we have a dependence at our register 1 value, our system will have to stall once to get the
correct value for register [1].
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ftest_bench/mips_proi r fhdufdk
Jtest_bench/mips_processor fhdufrs1_addr
ftest_bench/mips_pros

Jtest_bench/mips_processor fhdufmem_read_idex
ftest_bench/mips_pro or fhdufreg_s
Jtest_bench/mips_pros

Stest_bench/mips_pros

£
L8
L4
E
E
2
oL
0

Jtest_bench/mips_processor fhdufinstruction_idex
Stest_benchjmips_processor hdu/fstall
Jtest_benchmips_processor fhdu/fif_id_rd

Stest_benchjmips_processor hdufid_ex_rd Qo001

Figure 4.1.75: Hazard control module

As we can see, our hazard module will generate stall = 1 signal for the following operation to be stalled
until our register[1] value is updated from our first instruction. Once it does, it will continue to finish the
second instruction going into the ALU module and will give us the correct value for the operation.
Therefore, our Hazard control is working properly as well.
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4.2 Data Analysis

We have conducted a 10 minute youtube video to demonstrate the basics of our processor and how it
works. It could be reached from this link: https://youtu.be/uSyX6-xm8oE

Now, to analyze how our instructions are being fetched to our mips processor, let’s analyze our
instructions.txt file that is available in the same directory as of our processor files.

B 174 proj

@ New ~ 8 &) G W B instructions

File Edit  View
B > OneDrive - Personal > Desktop > 1
00
# Home Name ) gi
3
OneDrive <ol . vorkd 20
00
43

s5_demo.cr.mt 08
B Deskiop emo.cr.m S

B class_demo.mpf 00

. 43

B instructions o8

! Documents 2 L]
B instructions 25

& Pictures

@ Music

stration.cr.mti

B MIPS-DEMO.cr.mt
B MiPS-DEMO.mpf
& ro-pip

B ro-pip

. no-pip.qws

[ ] projectMips.cr.mti

Creative Cloud File: .
E reative Houd e [ ] projectMips.mpf

OneDrive - Fresno ¢
B test

B transcript
B vsimawif
| R
" Network mips.cr.mti

& Linux mips.mpf

Ln1, Col1
| 1iter |

Figure 4.2.1: Instructions.txt file

We are inserting our instructions via an output text file to our processor’s instruction_memory module in
order to fetch instructions. This way, we are simulating our processor at all times, and the only file we
need to make adjustments is this text file when we want to upload new sets of instructions for the
program.
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Now, let's take a look at our instructions memory module to understand how this is allowed and possible
to accomplish such feature:

module instruction_memory
input clk,
input [31:@] address,
output reg [31:8] instruction

reg [7:8] mem[©:4895];

integer fp;
integer status;
integer i;

initial begin

r);

tp = $fopen("instructions.txt”,
if (fp != @) begin
for (i =@; 1 < 4896; i = i+1) begin
status = $fscanf(fp, "%h", mem[i]);

if (status == B) begin
$display("Error: Could not read instruction at address &d", i
$finish;

end

else begin
$display("Error: Could not open file 'instructions
$finish;

) address) begin
instruction = {mem[address+8], mem[address+1], mem[address+2], mem[address+3]};

endmodule

Figure 4.2.1: Instructions_ memory module
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The given code represents a Verilog module called "instruction memory" that models an instruction
memory block. It reads instructions from a text file called "instructions.txt" and stores them in an internal
memory array called "mem". The module provides an interface to access instructions based on the
provided address.

Module and Memory Declaration:
The module declaration specifies the module name (instruction memory) and its ports: clk (a clock

input), address (a 32-bit input representing the memory address), and instruction (a 32-bit output
representing the retrieved instruction).

module instruction_memory {

input clk,
input [31:0] address,
output reg [31:0] instruction

Figure 4.2.2: module declaration

The mem declaration creates an internal memory array of size 4096, where each element is an
8-bit register. It represents the instruction memory.

reg [T:0] mem[0:4095];

Figure 4.2.3: Memory declaration

Initial Block:

initial begin
fp = $fopen( instructions.txt”, "z");
if {fp != 0) begin
for (i =0; i < 4096; i = i+l) begin
status = $fscanf(fp, "%h", mem[i]);
if (status == 0) begin
$display("Error: Could not read instruction at address %d",
$finish;
end
end
$fclose(fp);

begin

$display("Exrror: Could not open file 'instructions.txt'"™);
$finish;

Figure 4.2.4:Initial block
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The initial block is executed once at the start of simulation. Inside the block, it attempts to open
the file "instructions.txt" using $fopen function, which returns a file pointer (fp). If the file is
successfully opened (fp != 0), the block reads instructions from the file and stores them in the
memory array mem.

The for loop iterates from 0 to 4095, reading a hexadecimal value from the file using $fscanf and
storing it in mem(i]. If the read operation fails (status == 0), it displays an error message and
terminates the simulation using $finish. Finally, the file is closed using $fclose(fp).

If the file cannot be opened (fp == 0), it displays an error message and terminates the simulation.

Always Block:

always @{address)} begin

instruction = {mem[address+0], mem[address+l], mem[address+2], mem[addrd

end

Figure 4.2.5: Always block

The always block triggers whenever there is a change in the address input. It assigns the
corresponding instruction to the instruction output by concatenating four bytes from the mem
array based on the given address. The concatenation is performed using the {} syntax, which
combines the four elements into a 32-bit value.

In summary, this Verilog code represents an instruction memory module that reads instructions
from a file during initialization and provides an interface to retrieve instructions based on the
provided memory address.

Once the instructions get fetched, the processor will continue doing what its doing with the rest

of its blocks and completing the instruction as it is displayed in 4.1 Experimental results
sections of this report.
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4.3 Demo Analysis

I uploaded our demonstration videos to YouTube, you can access them from these links, although
every instruction has been analyzed individually at our Experimental Result section of this
report. Since If have already done over 90 pages for the report, I didn’t want to go way more
beyond this point. Therefore everything regarding analysis and demo is found under these
youtube links, as they are also submitted separately to Canvas.

Demonstration of r = a - [a/b]*b || Link: https://voutu.be/-FvuESWfeQ8

Demonstration of FORWARDING Logic and Analysis: https://youtu.be/mS1JrcWa30A
Demonstration of HAZARD Control unit and Analysis: https://youtu.be/zPa9nVMNOQyU
Demonstration of Sample Program: https://voutu.be/OAL-ecyAuaA

Quartus Analysis for the processor:

For some reason, it seems like that the FPGA memory is not showing up on Quartus Hardware
analysis that was synthesized. Here is our results for Hardware analysis:

3 Quartus Prime Lite Edition - Ci/Users/puyaf/OneDrive/Desktop/174 projftestftest_bench - test_bench
O r test_bench AT -3 FPFES LR O
roject Navigator @ Files O Qg x @ Compilation Report - test_bench ]
et write_back_mux.v B2 Flow Summary & <<Filters>
et test_bench.v = Flow settings Flow Status Successful - Thu May 18 21:20:44 2023
E® sign_extend.v B Flow Non-Default Global Settings Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Lite Edition
ez reg_file_mux.v B Flow Elapsed Time Revision Name test_bench
Em register_filev B3 Flow 0s summary Top-level Entity Name test_bench
zb2) program_counter.y E Flow Log Family Cyclone IV E
E“E processor_top.v > Analysis & Synthesis Device EP4CE115F29C7
E.,E PC_MUx.Y > Fitter Timing Models Final
kasks Compilation - =13 x O Flow Messages Total logic elements 0/114,480(0 %)
@ Flow suppressed Messages Total registers (]
Task Tl > Bm assembler Total pins 17528 (<1%)
¥ P compile Design Total virtual pins (]
> P analysis & Synthesis 00:00:13 Total memary bits 03,981,312 (0%}
> P Fitter (Place & Route) 00:00:08 Embedded Multiplier 9-bit elements 0/532(0%)
> P Assembler (Generate programming files) 00:00:03 Total PLLs 0/4(o%)
> P TimeQuest Timing Analysis
> P EDA Netlist Writer
W edit Settings

Figure 4.3.1: Quartus analysis
I have tried working on it and fixing it, however I didn’t get any positive results. Therefore, this

part of the project is not synthesizing correctly where it shows 0 total registers and logical
elements for our FPGA syntheses.
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General Program instructions, and how to manage the demonstration is given below with

directions and logic behind it:
For given program: r=a - [a/b] * b

I-Type: 001000 00000 00010 0000000000000010
I-Type: 001000 00000 00001 0000000000001001
R-Type: 000000 00010 00001 00011 00000 011010
R-Type: 000000 00011 00010 00100 00000 011000
R-Type: 000000 00001 00100 00101 00000 100010

/I addi r2, r0, 2
// addi r1, r0, 9
// divr3, r2, rl

// mul r4, r3, r2
// sub r5, r1, r4

Our result (r) will be in Register 5 location stored in memory.

To run the code above, we must store the hex conversions of binary operations in our
instructions.txt file and run the simulation. Here below is the given instructions in hex that was
demonstrated in the video as well. Below is given how to store these instructions in our

instruction.txt file.

20
02
00
02
20
01
00
09
00
41
18
1A
00
62
20
18
00
24
28
22
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Now Let's test our processor with a different set of operations, A simple multiplication and a
longer multiplication.

below does 2 x 9 = 18 saves result into r4

001000 00000 00010 0000000000000010 // 20020002
001000 00000 00011 0000000000001001 // 20030009
000000 00011 00010 00100 00000 011000 // 00622018
below does 25631 x 7543 = 193334633 saves result into r4
001000 00000 00010 0000000000000010 //2002641F
001000 00000 00011 0000000000001001 //20031D77
000000 00011 00010 00100 00000 011000 // 00622018

I already included a hazard control unit working in demonstration, but I will add the instructions
that I checked here as well.

ADD r3,rl1, r2
ADDr4,r1,r3

This causes hazard unit to stall 1 because our r3 value needs to complete updating before it uses
it for the next instruction's source operand.
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5. CONCLUSIONS

As a conclusion we have integrated and prototype the datapath and the control units of the simple
32-bit MIPS processor with five pipeline stages. This processor is written in Verilog hardware
language and able to perform arithmetic/logic such as AND, ADD, ADDI, OR, NOR, SUB,
MUL, DIV, data movement such as LW, SW, MFHI, MFLO, and flow control such as J and BEQ
instructions. Moreover, all instructions had passed the test successfully and were working
accordingly. Finally, The learning outcomes of this project resulted in having hands- on
experience on building a computer processor and implementing it on hardware.
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