
Lyles College of Engineering
Department of Electrical and Computer Engineering

Technical Report

Experiment Title: 5-Stage Pipelined MIPS Processor
Course Title: ECE 174 Advanced Computer Architecture
Instructor: Dr. Hayssam El-Razouk
Date Submitted: 18 May, 2023

Prepared By: Sections Written:

Puya Fard

Carlos Lopez

Section 1, 2, 3, 4, 5, 6

INSTRUCTOR SECTION
Comments:

Final Grade: Team Member 1: Puya Fard
Team Member 2: Carlos Lopez

1

TABLE OF CONTENTS

Section Page

TITLE PAGE ………………………………………………………………………………

TABLE OF CONTENTS ………………………………………………………………….

1. STATEMENT OF OBJECTIVES………………………………………………….
2. THEORETICAL BACKGROUND……………………………………………….
3. EXPERIMENTAL PROCEDURE…………………………………………………

3.1. Equipment Used……………………………………………………………
3.2. Project Procedure Description………………………………………………

3.2.1. Task 1: Implementation of individual blocks for single-cycle MIPS
Processor…………………………………………………………...

3.2.2. Task 2: Implementation of Forwarding logic to transform into
pipeline logic……………………………………………………….

3.2.3. Task 3: Implementation of Hazard Control unit to detect any
hazards………………………………………………………………

3.2.4. Task 4: 3.3.4. Task 4: Simulations………………………………….
3.3. Procedure Execution………………………………………………………..

3.3.1. Task 1: Implementation of individual blocks for single-cycle MIPS
Processor…………………………………………………………...

3.3.2. Task 2: Implementation of Forwarding logic to transform into
pipeline logic……………………………………………………….

3.3.3. Task 3: Implementation of Hazard Control unit to detect any
hazards………………………………………………………………

3.3.4. Task 4: 3.3.4. Task 4: Simulations………………………………….
4. ANALYSIS…………………………………………………………………………

4.1. Experimental Results……………………………………………………….
4.2. Data Analysis……………………………………………………………….
4.3. Demo Analysis……………………………………………………………..

5. CONCLUSIONS……………………………………………………………………
6. REFERENCES…………………………………………………………………….

1

2

3
3
18
18
18

18

19

19
19
20

20

37

53
56
57
57
86
90
93
94

2

1. STATEMENT OF OBJECTIVES

The objective of this project is to integrate and prototype the datapath and the control units of the
simple 32-bit MIPS processor with five pipeline stages. This processor should be written in
Verilog hardware language and must be able to perform arithmetic/logic, data movement, and
flow control instructions. Furthermore, students should design and architect the memory to
support the following zones: code section and data section. Finally, having the processor operate
on an Intel DE2-115 FPGA development board is the ultimate goal of this project. The learning
outcomes of this project will result in students having hands- on experience on building a
computer processor and implementing it on hardware.

2. THEORETICAL BACKGROUND

Modelsim - source: (“ModelSim HDL simulator | Siemens Software”)

ModelSim is a hardware simulation and debugging tool developed by Mentor Graphics, which is
used for designing and testing digital circuits. It is one of the most widely used simulation tools
in the industry and is often used in the development of electronic systems, ranging from simple
digital circuits to complex integrated circuits (ICs) and system-on-chip (SoC) designs.

ModelSim supports both Verilog and VHDL hardware description languages (HDLs), which are
used to describe the behavior of digital circuits. HDLs are programming languages that allow
designers to describe the function and behavior of a digital circuit, including its inputs, outputs,
and internal workings, in a way that can be simulated and tested.

ModelSim uses a powerful simulation engine that can simulate millions of logic gates and
thousands of flip-flops in a matter of seconds. It allows designers to simulate and test their
designs before they are physically implemented, which can help to catch errors and reduce the
time and cost of development.

In addition to simulation, ModelSim also provides advanced debugging features, such as
waveform viewing and tracing, which allow designers to visualize and analyze the behavior of
their designs. It also includes support for advanced verification methodologies such as Universal
Verification Methodology (UVM) and Open Verification Methodology (OVM).

3

MIPS Implementation - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Before looking at the diagram we need a little bit of context:

A very brief introduction to logic circuits.
A very high-level view of the processor's datapath.
A quick overview of some intermediate-level processor organizations. The single-cycle
organization is one of these organizations.

After looking at the diagram we will:

Look at black-box descriptions of the components of the diagram.
Take a quick look at the functions of control signals in the diagram.

Logic Circuits: Logic circuits use two different values of a physical quantity, usually voltage, to
represent the boolean values true (or 1) and false (or 0). Logic circuits can have inputs and they
have one or more outputs that are, at least partially, dependent on their inputs. In logic circuit
diagrams, connections from one circuit's output to another circuit's input are often shown with an
arrowhead at the input end.

In terms of their behavior, logic circuits are much like programming language functions or
methods. Their inputs are analogous to function parameters and their outputs are analogous to
function returned values. However, a logic circuit can have multiple outputs.

There are two basic types of logic circuitry: combinational circuits and state circuits.

● Combinational circuit behaves like a simple function. The output of a combinational
circuit depends only on the current values of its input.

● State circuitry behaves more like an object method. The output of state circuitry does not
just depend on its inputs — it also depends on the past history of its inputs. In other
words, the circuitry has memory.

This is much like an object method whose value is dependent on the object's state: its instance
variables. These two types of circuitry work together to make up a processor datapath.

4

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Processor Datapath:

Figure 2.1: Processor datapath

A processor's datapath is conceptually organized into two parts:

● State elements hold information about the state of the processor during the current clock
cycle. All registers are state elements.

● Combinational logic determines the state of the processor for the next clock cycle. The
ALU is combinational logic.

This diagram, like most diagrams on this web site, adheres to the following conventions:

● Clock signals are colored orange.
● Control signals are colored blue.

There are four major processor organizations:

● Single-cycle organization: This is the organization described in this web presentation. It
is characterized by the fact that each instruction is executed in a single clock cycle. It is
not a realistic implementation — it requires two separate memories: one for data and one
for instructions. Also, the clock cycle has to be made quite long in order for all of the
signals generated in a cycle to reach stable values.

● Multicycle organization: This organization uses multiple clock cycles for executing each
instruction. Each cycle does only a small part of the work required so the cycles are much
shorter. Much of the circuitry is the same as the single-cycle implementation. However,
more state components must be added to hold data that is generated in an early cycle but
used in a later cycle.

5

● Pipelined organization: Like the multicycle organization, the pipelined organization uses
multiple clock cycles for executing each instruction. By adding more state components
for passing data and control signals between cycles, the pipelined organization turns the
circuitry into an assembly line. After the first cycle of one instruction has completed you
can start the execution of another instruction, while the first moves to its next cycle.
Several instructions can be in different phases of execution at the same time.

● Register renaming organization: Register renaming is an extension of the pipelining idea.
It deals with the data dependence problem for a pipeline — the fact that instructions in
the pipeline produce data needed by other instructions in the pipeline.

Pipelining - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The basic concept of pipelining is to break up instruction execution activities into stages that can
operate independently. Every instruction passes through the same stages much like an assembly
line.

For example, we could set up the following stages for a MIPS pipeline.

● IF - instruction fetch and PC increment
● ID - source register fetch and instruction decode
● EX - ALU source selection, ALU operation, and branch target calculation
● MEM - data memory access
● WB - write back to destination register

With these pipeline stages, a sequence of instructions can be executed as shown below. Time
progresses from left to right. Each horizontal division represents one clock period.

Figure 2.2: Pipeline stages

6

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Benefit of Pipelining - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

As you can see from the figures below, pipelining increases instruction throughput. Notice that
after the 5th cycle, the unpipelined execution completes only one instruction every 5 cycles,
while the idealized pipelined execution completes 5.

Ideally, instruction throughput is increased to 1 instruction per clock. In other words, the clocks
per instruction (CPI) factor in the performance equation is reduced from 5.0 to 1.0.

Figure 2.3: Pipeline benefits

7

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Pipeline Implementation - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The best starting point for a pipelined implementation is a single-cycle implementation. For
example, for a MIPS pipeline you could start with an implementation whose high-level data path
is shown as the "Before Pipelining" diagram below.

Figure 2.4: Before pipeline implementation

To implement pipelining registers are added between stages. The pipelining registers are shown
in light green in the "After Pipelining" diagram below. The pipelining registers hold data and
control signals that are produced in an early stage for use in later stages.

Signals generated in a stage cannot be held for more than one cycle. A signal that is generated in
an early stage and used several stages later must pass through all of the intermediate pipeline
registers. For example, a control signal that is produced in the ID stage and used in the WB stage
must pass through 3 pipelining registers: the ID/EX registers, the EX/MEM registers, and the
MEM/WB registers.

Figure 2.5: After pipeline implementation

8

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Obstacles to Pipelining - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

The analogy between a pipeline and an assembly line breaks down in one important respect.
Putting together a door for a car does not depend on cars further along in the assembly line.

But there are dependencies between instructions. These can be seen in the diagram below where
data is passed back from a later stage to an earlier stage. The ones that involve updating the PC
(red) are called control hazards. The ones that involve writing data back to registers (purple) are
called data hazards.

Both of these dependencies are inherent in the instruction set. Compiler writers call them control
and data dependencies. In both cases the execution of a later instruction depends on the results of
earlier instruction. There are other obstacles, called structural hazards that arise from the starting
point of the pipelining implementation

Figure 2.6: Dependencies

Control Hazards - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Control hazards arise from branches and jumps. They involve signals that are passed from a later
stage to an earlier stage:

● A branch or jump target address is not available until the ID stage but it needs to be
passed back to the PC for the IF stage of the next instruction.

● The condition for a branch instruction is not tested until the EX stage but it needs to be
passed back to the PC Update Control for the IF stage of the next instruction.

9

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml
https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Data Hazards - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Data hazards arise from instructions producing data that is used in later instructions. They
involve signals that are selected by the MemtoReg multiplexer in the WB stage to be written to a
register. The register may be read by a later instruction in its ID stage.

Structural Hazards - source: (https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml)

Structural hazards are hazards that depend on the starting point for the implementation. For
example, if we started with a multicycle implementation, we would have problems in a pipeline
because the ALU is used in more than one stage by the same instruction. Executing a branch
instruction, the ALU is used to increment the PC, compute a branch target address, and compare
two source operands. These uses are going to prevent other instructions in the pipeline from
using the ALU.

Pipelining and the Instruction Set

Pipelining is one of the primary reasons why RISC processors have a significant speed advantage
over CISC processors. If arithmetic and logical instructions can access memory for source or
destination operands then it is much more difficult to break down instruction execution into
stages with equal durations. If memory addressing modes are complex then this problem just gets
harder. If instructions have varying lengths it is more difficult to start a new instruction every
cycle.

When pipelining is done with a CISC processor it is done at a different level. The execution of
instructions is broken down into smaller parts which can then be pipelined. In effect, The CISC
instructions are translated into a sequence of internal RISC instructions, which are then
pipelined. This adds complexity to the processor and generally does not produce as much benefit.
For upward compatibility, the Intel 80x86 family of processors, including Pentium processors
since the early 1990s, have used this approach.

5-Stage-Pipeline MIPS - source: (“VHDL MIPS 5 stage pipeline Bug”)

10

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml
https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml

Figure 2.7: 5-stage pipeline for MIPS

The figure above Figure 2.7 shows the complete 5 stages required for the 32-bit mips processor.
The figure isn’t a complete list of requirements for completing the processor, muxes, control
units, and hazard block isn’t displayed. However, it is a general idea for completing the
processor.

Understanding Mips Instructions - source: (“VHDL MIPS 5 stage pipeline Bug”)

Data types:
1. Instructions are all 32 bits
2. byte(8 bits), halfword (2 bytes), word (4 bytes)
3. a character requires 1 byte of storage
4. an integer requires 1 word (4 bytes) of storage

Registers
● 32 general-purpose registers
● register preceded by $ in assembly language instruction

● two formats for addressing:
○ using register number e.g. $0 through $31
○ using equivalent names e.g. $t1, $sp

11

● special registers Lo and Hi used to store result of multiplication and division
○ not directly addressable; contents accessed with special instruction mfhi ("move

from Hi") and mflo ("move from Lo")
○ stack grows from high memory to low memory

Figure 2.8: Register descriptions

Program Structure - source: (“VHDL MIPS 5 stage pipeline Bug”)

● just plain text file with data declarations, program code (name of file should end in suffix
.s to be used with SPIM simulator)

● data declaration section followed by program code section

Data Declarations

12

● placed in section of program identified with assembler directive .data
● declares variable names used in program; storage allocated in main memory (RAM)

Code

● placed in section of text identified with assembler directive .text
● contains program code (instructions)
● starting point for code execution given label main:
● ending point of main code should use exit system call (see below under System Calls)

Comments

● anything following # on a line
● # This stuff would be considered a comment

Load / Store Instructions - source: (Lecture slides)

RAM access is only allowed with load and store instructions. all other instructions use register
operands.

13

Figure 2.9: lw/sw instructions

Arithmetic Instructions

● most use 3 operands
● all operands are registers; no RAM or indirect addressing
● operand size is word (4 bytes)

14

Figure 2.10: Arithmetic operations

Control Structures

Branches: comparison for conditional branches is built into instruction

Figure 2.11: Control operations

Jumps

Figure 2.12: Control operations 2

MIPS Instruction Types - source: (Lecture notes)

When MIPS instructions are classified according to coding format, they fall into four categories:
R-type, I-type, J-type, and coprocessor. The coprocessor instructions are not considered here.

15

The classification below refines the classification according to coding format, taking into
account the way that the various instruction fields are used in the instruction. The details of the
execution activities and the required control signal values depend almost entirely on the
instruction type in this classification.

● Non-Jump R-Type
● Immediate Arithmetic and Logic
● Branch
● Load
● Store
● Non-Register Jump
● Register Jump

In the remainder of this web page, the instruction fetch and instruction decode activities are omitted since
they are the same for all instructions. The PC update activity only shows updates beyond the standard PC
increment (PC ← PC + 4).

Figure 2.12: Instruction information

Non-Jump R-Type

Non-jump R-type instructions include all R-type instructions except jr and jalr. This includes all of the
integer arithmetic and bitwise operations, along with the non-branching compare instructions such as slt,
sgt, and seq. They use the R coding format. The opcode bits are all 0.

16

● PC update: There is no update beyond the normal increment.
● Source operand fetch: The two source operands are rs and rt.
● ALU operation: The ALU operation is determined by the function field.
● Memory access: There is no memory access for data.
● Register write: The result from the ALU is written to rd.

Immediate Operand

Most immediate operand instructions perform arithmetic or logical operations using one operand
that is coded into the instruction. The immediate operand group also includes the comparison
instructions slti and sltiu and the lui instruction. Immediate operand instructions use the I coding
format.

● PC update: There is no update beyond the normal increment.
● Source operand fetch: The two source operands are rs and the immediate field. For all instructions

except sltiu the immediate field is sign extended. For sltiu the immediate field is zero extended.
This instruction is not considered in Patterson and Hennessey.

● ALU operation: The ALU operation is determined by the opcode.
● Memory access: There is no memory access for data.
● Register write: The result from the ALU is written to rt.

Branch

Branch instructions conditionally branch to an address whose distance is coded into the instruction.
Branch instructions use the I coding format.

● PC update: If the branch condition is true (see ALU operation), PC ← PC + 4 + (sign-extended
immediate field)<<2.

● Source operand fetch: The two source operands are rs and rt.
● ALU operation: The source operands are subtracted for comparison.
● Memory access: There is no memory access for data.
● Register write: There is no register write.

3. EXPERIMENTAL PROCEDURE
3.1 Equipment used

1. Personal Computer
2. Modelsim
3. Lecture slides and ICAs

17

4. Online resources

3.2 Project Procedure Description

3.2.1. Task 1: Implementation of individual blocks for single-cycle MIPS processor
1. When it comes to designing a MIPS processor, it's always good to start off with individual blocks

required rather than trying to implement it all together.
2. The first glance of implementation on the MIPS processor is focused on the single cycle because

it is easier to debug if there are any errors in individual blocks at the beginning.
3. Therefore, the processor is divided into small modules as follows:

a. ALU
b. ALU_Control
c. Branch_Adder
d. Control_Unit
e. Data_Memory
f. Instruction_Memory
g. Jump_Calc
h. Program_Counter
i. Register_File
j. Sign_Extend
k. Mux

i. Operand_mux
ii. Pc_mux
iii. Reg_file_mux
iv. Write_back_mux

l. Processor_top: which is the top module to connect all the modules for single-cycle MIPS
Processor.

4. Once all the modules are connected via the top module, there will be simulations that will be
analyzed to check if there are any errors with individual modules before moving to the next stage
of the process, forwarding and pipelining.

3.2.2. Task 2: Implementation of Forwarding logic to transform into pipeline logic
1. Once configured the single-cycle MIPS processor from task 1, we will go ahead and implement

the forwarding logic by implementing the following modules:
a. IFID
b. IDEX
c. EXMEM
d. MEMWB

18

2. Once these modules are completed, then we will configure the processor_top module accordingly
to use these blocks for forwarding logic.

3. Once done, simulate the results and check if there are any errors in individual modules and
overall wave outputs.

3.2.3. Task 3: Implementation of Hazard Control unit to detect any hazards
1. As mentioned under the theoretical section of this report, while doing forwarding, we will

encounter hazards along the way.
2. Therefore, in this step of the project, we have implemented hazard control module to detect any

hazard found
3. If it does, then we will generate “bubbles” to make sure pipelining is successfully operating with

no problem.

3.2.4. Task 4: Simulations
1. Once at this stage, the 5-stage pipelined MIPS processor design is complete
2. Now we are doing simulations and testing the instructions listed in the project manual to see if we

are getting correct results and our processor is doing what we want.
3. The findings for this step will be under the Analysis section.

3.2.5. Task 5: Implementation of the processor on FPGA
1. At this stage of the project, we will upload the processor onto the FPGA, specifically the

DE2-115 development board.
2. We will test our instructions one by one and check our results
3. It must be noted that we will use FPGAs memory instead of registers while testing our processor.

3.3 Project Execution

3.3.1. Task 1: Implementation of individual blocks for single-cycle MIPS processor

ALU: ALU stands for Arithmetic Logic Unit, which is a fundamental component of a computer's central
processing unit (CPU). The ALU is responsible for performing arithmetic and logical operations on
binary numbers.

19

The arithmetic operations include addition, subtraction, multiplication, and division, while the logical
operations include AND, OR, NOT, and XOR. The ALU can perform these operations on single bits or on
groups of bits, depending on the instruction provided to it by the CPU.

The ALU has inputs for two binary numbers and a control signal that determines the operation to be
performed on the numbers. It then performs the operation and outputs the result. The result can be used by
other components of the CPU or stored in memory.

Now let’s take a look at the ALU Module that is implemented for this project:

Figure 3.3.1: Initialize
We first must initialize our input, output and output reg ports just like given above, responsible for being a
placeholder for operand a, b and output. Then we will start initializing our arithmetic and logical
operations one by one with a case number assigned to them.

Figure 3.3.2: Cases
After initialization of each individual case that has a corresponding arithmetic, logic, or data flow
operation, our ALU module is completed. However, we still need to configure the control module that
will interact with the ALU module.

ALU CONTROL: The ALU Control Unit (ALU CU) is responsible for controlling the operation of the
Arithmetic Logic Unit (ALU) within a CPU. The ALU CU takes in the instruction from the CPU, which
specifies the type of arithmetic or logical operation that needs to be performed on the data.

20

The ALU CU is responsible for generating the appropriate control signals that direct the ALU to perform
the correct operation. It determines which arithmetic or logical operation needs to be performed, based on
the instruction provided, and generates the appropriate signals to control the ALU's operation.

The ALU CU is also responsible for deciding how the result of the operation should be handled, including
setting the appropriate condition codes to indicate whether the result is negative, zero, or positive.

Figure 3.3.3: Initialize

The module takes in an instruction and an ALU operation code as input and produces a 4-bit output signal
called alu_control, which specifies the operation to be performed by the Arithmetic Logic Unit (ALU).

The code first extracts the opcode and function fields from the instruction. The opcode is a 6-bit field that
specifies the type of instruction, and the function field is a 6-bit field that specifies the specific operation
to be performed by the ALU for R-Type instructions.

The module then uses a case statement to determine the appropriate value for alu_control based on the
input instruction and alu_op. The case statement handles three cases based on the value of alu_op:

Finally, the module outputs the value of alu_control, which is used to control the operation of the ALU.
The value of alu_control specifies the specific operation to be performed by the ALU, such as addition,
subtraction, multiplication, or logical operations like AND, OR, and NOR.

21

Figure 3.3.4: Control signals for R, I and J-TYPE instructions

22

BRANCH ADDER: The "branch_adder" module performs a critical function in a processor's pipeline to
calculate the address of the next instruction after a branch instruction is executed. This module is used in
conjunction with other components of a processor's pipeline to ensure correct execution of branch
instructions.

Figure 3.3.5: Branch adder

The module takes in three input signals: "branch", "current_pc", and "sign_extend", and produces an
output signal "pc_branch", which is the address of the next instruction to be executed after a branch
instruction is encountered.

The "branch" signal is a single bit that indicates whether a branch is being taken or not. The "current_pc"
signal is a 32-bit input that represents the current program counter (PC), which is the address of the
current instruction being executed. The "sign_extend" signal is a 32-bit input that represents the
sign-extended immediate value of the branch instruction.

The module uses an "always" block to calculate the address of the next instruction after a branch. If
"branch" is high, indicating that a branch is being taken, the module adds the "sign_extend" value to the
"current_pc" value to calculate the address of the next instruction. If "branch" is low, indicating that a
branch is not being taken, the module sets the "pc_branch" value to '0'.

The output signal "pc_branch" is a 32-bit value that represents the address of the next instruction to be
executed after a branch. If the branch is taken, the value of "pc_branch" will be equal to "current_pc" plus
the "sign_extend" value. If the branch is not taken, the value of "pc_branch" will be 0.

23

DATA MEMORY: This module essentially implements a simple memory unit where data can be written
to or read from specific memory locations based on an address input.

Figure 3.3.6: Data memory

This code defines a module for a data memory unit in a digital system. The module has a synchronous
interface consisting of an address input (address), a write data input (write_data), and read/write control
signals (mem_read and mem_write) that are triggered by a clock signal (clk). The module also has an
output read_data which represents the data read from the memory location specified by the address input.

The module implements the memory using an array of 1024 32-bit registers (RAM), initialized to zero.
The address input is used to index the RAM array to perform memory read or write operations. When
mem_write is asserted, the write_data input is written to the memory location specified by the address
input. When mem_read is asserted, the read_data output is updated with the data stored in the memory
location specified by the address input.

24

INSTRUCTION MEMORY: The instruction_memory module provides an interface for a processor to
read instructions from a memory based on a specified address.

Figure 3.3.7: Instructions

The instruction_memory module is a memory unit that stores instructions for a processor. It has three
inputs:

1. clk: a clock signal
2. address: a 32-bit input representing the memory address to read from
3. instruction: a 32-bit output representing the instruction read from the memory

The module uses a reg array called mem to store the instructions. The initial values of this array are set in
the initial block of the module. Each instruction is stored as a 32-bit value in the mem array.
The always block in the module is triggered whenever the address changes. It reads the 32-bit instruction
stored in the mem array at the address specified by address, and assigns this instruction to the instruction
output. This means that the instruction output will always contain the instruction stored at the memory
address specified by address.

25

JUMP CALCULATION: Calculates the target jump address and determines whether the jump should be
taken or not.

Figure 3.3.7: Jump calculation

The old_pc input is the current address of the instruction being executed. The target_address input is the
26-bit address of the instruction to which the program should jump. The jump input is a signal that
determines whether the jump should be taken.

The jump_pc output is the computed target address of the jump instruction. The module uses the jump
signal to decide whether to take the jump or not. If the jump signal is asserted, the module constructs the
jump address by concatenating the upper 4 bits of the current address (old_pc[31:28]) with the 26-bit
target address (target_address) and appending 2 bits of zero (2'b00) to the least significant end. Otherwise,
the module sets jump_pc to zero.

26

PROGRAM COUNTER: The program_counter module is responsible for keeping track of the program
counter (PC) for a processor. The program counter is a register that stores the address of the current
instruction being executed, and it is updated after each instruction is executed.

Figure 3.3.8: Program counter

The module has four ports: clk, reset, pc_in, pc_adder, and pc_out. clk is the clock signal for the
processor, reset is the reset signal, pc_in is the updated program counter value, pc_adder is the program
counter for the next instruction to be executed, and pc_out is the program counter for the current
instruction being executed.

The always @(posedge clk or negedge reset) block handles the clock and reset signals. When reset is
active low, the pc_out is set to 0. Otherwise, the pc_out is set to the updated program counter value pc_in
during the positive edge of the clk signal.

The always @* block is a combinational logic that calculates the pc_adder value by adding 4 to pc_out.
This value is used to determine the address of the next instruction to be executed after the current
instruction.

27

REGISTER FILE: A register file is a collection of registers that are used in a digital circuit to
temporarily store and manipulate data during computation. The registers can be accessed by the circuit's
control unit, which retrieves data from the registers, performs arithmetic or logical operations on the data,
and stores the results back into the registers.

Figure 3.3.9: Register file

The module has the following inputs and outputs:

Inputs:
● clk: the clock input signal.
● read_register_1: a 5-bit input signal that specifies the first register to be read.
● read_register_2: a 5-bit input signal that specifies the second register to be read.
● write_register: a 5-bit input signal that specifies the register to be written to.
● write_data: a 32-bit input signal that specifies the data to be written to the register.
● reg_write: an input signal that specifies whether the write operation is to be performed.

28

Outputs:
● read_data_1: a 32-bit output signal that contains the data read from the first register.
● read_data_2: a 32-bit output signal that contains the data read from the second register.

The module contains a 32-bit array of registers called "registers", with one register for each of the 32
possible register addresses. The initial values of the registers are set in an "initial" block, which is used for
testing purposes.

The "always" block is triggered by the positive edge of the clock signal. If the "reg_write" signal is high,
the data specified by the "write_data" signal is written to the register specified by the "write_register"
signal.

The "assign" statements are used to assign the data read from the specified registers to the "read_data_1"
and "read_data_2" output signals.

REGISTER FILE MUX: The reg_file_mux module is a multiplexer that selects the destination register
for a write operation in a MIPS processor's register file based on the instruction being executed.

Figure 3.3.10: Register file mux

The module takes in a 32-bit instruction signal and a control signal reg_dst. The reg_dst signal determines
which of two fields in the instruction contains the destination register number. If reg_dst is high, then bits
20-16 of the instruction contain the register number, otherwise bits 15-11 are used. The module outputs
the selected register number on a 5-bit signal mux_output.

29

SIGN EXTEND: "sign_extend" takes a 16-bit input "in_data" and extends the sign bit (the leftmost bit)
to fill the remaining 16 bits, creating a 32-bit output "out_data".

Figure 3.3.11: Sign extend

The sign bit is typically used to indicate whether the number is positive or negative. If the sign bit is 0, the
number is positive; if it is 1, the number is negative. In a two's complement system, the sign bit is also
used to represent the magnitude of the number.

The code uses a concatenation operator ({ }) to create a 32-bit value. The first argument is an array of 16
copies of the sign bit (in_data[15]), which is used to fill the upper 16 bits of the output. The second
argument is the original 16-bit input (in_data), which is used to fill the lower 16 bits of the output. The
resulting 32-bit output is then assigned to "out_data".

PROGRAM COUNTER MUX: PC (program counter) multiplexer selects the next program counter
address. It has five inputs and one output.

Figure 3.3.12: PC Mux

The pc_in input is the current program counter address, which is the address of the instruction to be
executed next. The branch input indicates whether the current instruction is a branch instruction or not.
The jump input indicates whether the current instruction is a jump instruction or not. The zero input is the
result of the ALU's zero flag, which indicates whether the previous ALU operation resulted in a zero
value. The jump_pc input is the program counter value that should be used if the current instruction is a

30

jump instruction.The jump_address input is the jump target address, which is computed based on the
instruction's offset value.

The imem_address output is the selected program counter address that should be used to fetch the next
instruction. It is computed based on the current program counter address, branch condition, jump
condition, and jump target address. If pc_in is zero, the output is also set to zero. Otherwise, if the current
instruction is a branch instruction and the zero flag is set, the output is set to the jump target address. If
the current instruction is a jump instruction, the output is set to the jump program counter address.
Otherwise, the output is set to the next sequential program counter address.

OPERAND MUX: Operand_mux implements a multiplexer that selects between two input operands
based on a control signal alu_src. If alu_src is high, then the output operand_b_out is set to the immediate
value immediate, otherwise it is set to the value of the second input operand_b. This multiplexer is
typically used in a CPU's datapath to select between two sources of operands for an arithmetic or logical
operation, depending on the instruction being executed.

Figure 3.3.13: Operand mux

31

WRITE BACKMUX: This module implements a multiplexer (mux) used for selecting data to be written
back to a register in a processor's write-back stage. The module has three inputs: read_data, alu_result,
and mem_to_reg, and one output write_data. The read_data input represents the data read from memory
in the memory access stage, alu_result is the output of the arithmetic and logic unit (ALU) in the
execution stage, and mem_to_reg is a control signal that determines whether the output of the memory
access stage or the output of the ALU is selected for writing back to a register.

Figure 3.3.14:Write back mux

The write_data output of the module is set to read_data if mem_to_reg is asserted (i.e., is equal to 1),
otherwise it is set to alu_result. This mux is used to select the correct data to be written back to a register
in a processor's write-back stage, depending on whether the instruction requires data from memory or the
output of the ALU.

32

CONTROL UNIT: The control unit takes an instruction as input and generates various control signals
based on the opcode and function fields of the instruction.

The module defines output signals for reg_dst, branch, jump, mem_read, mem_to_reg, alu_op,
mem_write, alu_src, and reg_write. These signals are used to control other parts of the processor, such as
the register file, ALU, and memory.

Figure 3.3.15: Initialize

The control unit extracts the opcode field from the instruction and uses it to determine which instruction
type it is dealing with: R-Type, I-Type, or J-Type. It then sets the control signals accordingly.

Figure 3.3.16: R-type instruction

33

This part of the code is defining the values of various control signals based on the opcode field of the
input instruction. These control signals are used to enable or disable various components of the processor
during the execution of the instruction.

The case statement checks the value of the opcode variable and executes the corresponding code block. In
this particular code block, which corresponds to R-Type instructions, the control signals are set as
follows:

● reg_dst: This signal indicates whether the instruction writes to a register or not. In this case, it is
set to 0, indicating that the instruction does not write to a register.

● branch: This signal indicates whether the instruction is a branch instruction. In this case, it is set
to 0, indicating that the instruction is not a branch instruction.

● jump: This signal indicates whether the instruction is a jump instruction. In this case, it is set to 0,
indicating that the instruction is not a jump instruction.

● mem_read: This signal indicates whether the instruction performs a memory read operation. In
this case, it is set to 0, indicating that the instruction does not perform a memory read operation.

● mem_to_reg: This signal indicates whether the data read from memory should be written to a
register or not. In this case, it is set to 0, indicating that the data should not be written to a register.

● alu_op: This signal indicates the operation that should be performed by the ALU. In this case, it is
set to 2'b10, indicating that the ALU should perform a subtraction operation.

● mem_write: This signal indicates whether the instruction performs a memory write operation. In
this case, it is set to 0, indicating that the instruction does not perform a memory write operation.

● alu_src: This signal indicates whether the second operand of the ALU should come from the
immediate field or the second register file. In this case, it is set to 0, indicating that the second
operand should come from the second register file.

● reg_write: This signal indicates whether the instruction writes to a register or not. In this case, it is
set to 1, indicating that the instruction writes to a register.

34

Figure 3.3.17: I-type instruction

This is a block of code within the always block that assigns control signals to various outputs based on the
value of the opcode signal, which determines the type of instruction being executed.

For example the BEQ instructions, the code sets the following signals:

● reg_dst to 1'b0, indicating that this instruction does not specify a destination register
● branch to 1'b1, indicating that this instruction is a branch instruction
● jump to 1'b0, indicating that this instruction is not a jump instruction
● mem_read to 1'b0, indicating that this instruction does not read from memory
● mem_to_reg to 1'b0, indicating that this instruction does not write to memory
● alu_op to 2'b01, indicating that the ALU operation for this instruction is subtraction
● mem_write to 1'b0, indicating that this instruction does not write to memory
● alu_src to 1'b0, indicating that the second operand of the ALU operation comes from the register

file
● reg_write to 1'b0, indicating that this instruction does not write to a register.

35

PROCESSOR TOP MODULE: This module is an implementation of a processor's datapath, containing
several sub-modules for the various stages of the processor's operation, such as instruction fetch, decode,
execute, and memory access. Each sub-module is set to be interconnected using several input and output
wires, which are used to pass data and control signals between modules.

Here are some of the key sub-modules and wires in this design:

● PC Selection MUX: selects between the output of the branch adder, jump calculator, and
instruction memory to determine the next address to fetch from

● Program Counter: generates the next address to fetch from, based on the output of the PC
Selection MUX

● Instruction Memory: reads the instruction at the current address specified by the Program Counter
● Control Unit: decodes the instruction and generates control signals for the rest of the datapath,

such as whether to read from or write to memory or registers
● Register File MUX: selects between the destination register specified by the instruction and a

register specified by the Control Unit
● Register File: reads from or writes to the register file based on the input signals
● ALU Control Unit: generates the appropriate ALU operation based on the instruction and control

signals
● Sign Extend: extends the immediate value in the instruction to a full 32-bit value
● Branch Adder: computes the branch address based on the current PC and the sign-extended

immediate value in the instruction
● Jump Calculator: computes the jump address based on the current PC and the immediate value in

the instruction

In summary, all of the modules that had been created so far for the single-cycle processor, come all
together and get wired in this module to be interconnected with one another to pass the data, address, and
values generated by the instructions.

36

3.3.2. Task 2: Implementation of Forwarding logic to transform into pipeline logic
1. Since the single-cycle MIPS processor from task 1, we will go ahead and implement the

forwarding logic by implementing the following modules:

IF_ID MODULE: This module is responsible for storing the fetched instruction and its associated
program counter value in registers so that they can be passed to the next stage of the pipeline.

Figure 3.3.18: IF/ID Module

The inputs to the module are clk, reset, flush, instruction, and pc_in. The clk input is a clock signal that is
used to synchronize the operations of the module. The reset and flush inputs are used to reset and flush
the pipeline, respectively. The instruction input is the 32-bit instruction fetched from memory, and the
pc_in input is the program counter value associated with the fetched instruction.

The module has two outputs: instruction_ifid and pc_ifid. These are both 32-bit registers that store the
instruction and program counter values, respectively, in the instruction fetch/decode stage of the pipeline.

The module uses an always block that triggers on the positive edge of the clk signal. If either the reset or
flush inputs are asserted, the registers are reset to zero. Otherwise, the values of instruction and pc_in are
loaded into instruction_ifid and pc_ifid, respectively.

37

ID_EX MODULE: The IDEX stage takes the instruction fetched in the Instruction Fetch stage and
decodes it, preparing it for execution in the Execute stage.

Figure 3.3.19: IDEX initialization

The module takes several input signals representing various control signals and data from the IFID stage
and provides the necessary control signals and data for the Execute stage. The inputs include clk for the
clock, reset for reset, flush to clear the pipeline in case of a branch misprediction, instruction_ifid and
pc_ifid to receive instruction and program counter from the previous stage, and operand_a and operand_b
to receive data from the register file, among others.

The output signals are derived from the inputs after some computations and include instruction_idex
which carries the decoded instruction, pc_idex which carries the program counter for the current
instruction, and operand_a_idex and operand_b_idex which carry the operands for the current instruction.
Other output signals include various control signals for
execution such as reg_write_idex, mem_read_idex, mem_write_idex, and alu_op_idex, among others.

38

Figure 3.3.20: IDEX always module

39

EX_MEM MODULE: The EXMEM module is a module that represents a stage in a pipelined processor.
Specifically, this module represents the execution-to-memory stage of the pipeline, where results from the
execution stage are written to the memory stage.

Figure 3.3.21: EXMEM initialization

The module has several inputs, including control signals from the previous instruction
decode-to-execution stage (IDEX), as well as the result of the arithmetic/logic unit (ALU) operation, the
program counter (PC), and the address of the register being written to (wb_address). There are also
several outputs, which are the same control signals and data values but are passed on to the next stage of
the pipeline (the memory-to-writeback stage, or MEMWB).

40

The always block is a synchronous always block that is sensitive to the rising edge of the clock signal
(posedge clk). When the reset input is asserted, all output registers are reset to zero. Otherwise, the output
registers are updated with the input values on the rising edge of the clock.

Figure 3.3.22: EXMEM always block

The always block is executed on the positive edge of the clock signal (@(posedge clk)), and it
synchronously transfers the input signals from the previous pipeline stage (IDEX) to the current pipeline
stage (EXMEM). The transfer is controlled by a reset signal, which sets all the output registers to zero
when asserted.

41

When the reset signal is not asserted, the values of the input signals are assigned to the output registers.
The output registers store the control signals and data values that are needed by the next pipeline stage to
perform the memory access operation or to calculate the next instruction address.

Each output register corresponds to a control signal or data value, and it is assigned the value of the
corresponding input signal. For example, the reg_dst_exmem output register stores the control signal that
indicates whether the destination register for the result of the ALU operation is the register file or the
immediate value, and it is assigned the value of the reg_dst_idex input signal. Similarly, the
alu_result_exmem output register stores the result of the ALU operation and is assigned the value of the
alu_result input signal.

MEM_WB MODULE: The purpose of this stage is to write data back to the register file or memory,
completing the execution of the instruction that was started in the previous pipeline stage.

Figure 3.3.23:MEMWB initialization

42

The always @(posedge clk) block is a synchronous design that is triggered by the positive edge of the
clock signal. If the reset input is high, then all the output signals are reset to zero. Otherwise, the output
signals are updated to match the corresponding input signals from the previous pipeline stage.

The input signals from the previous pipeline stage include the results of memory reads, the result of an
ALU operation, and various control signals that determine what operation should be performed in the
current stage. The output signals are used to write data back to the register file or memory, depending on
the instruction that was executed in the previous stage.

Figure 3.3.24:MEMWB always block

43

UPDATING PROCESSOR TOP MODULE: After completing all individual blocks required for the
pipeline logic, we must interconnect the wires within the top module to make it work. Therefore, we have
updated the previous “single-cycle processor top” module to now operate as a forwarding supported
pipeline processor.

Figure 3.3.25: IFID Wires

These two lines declare wire variables instruction_ifid and pc_ifid with 32-bit widths. They will be used
to pass data between the IF (instruction fetch) stage and the ID (instruction decode) stage in your top-level
module.

The instruction_ifid wire will carry the 32-bit instruction fetched from memory during the IF stage to the
ID stage for decoding and execution.

The pc_ifid wire will carry the 32-bit program counter value for the next instruction to be fetched during
the IF stage. It is passed to the ID stage so that it can be used to calculate the address of the next
instruction in memory to be fetched.

The module below are responsible for wiring the required input/output ports of the id/ex stage in our top
module.

Figure 3.3.26: IDEX Wires

44

These wires represent various signals that are used in the ID/EX stage of the pipeline in a processor
design.

● reg_dst_idex: Selects the destination register for the writeback stage (either rt or rd)
● branch_idex: Indicates if the current instruction is a branch
● jump_idex: Indicates if the current instruction is a jump
● mem_read_idex: Indicates if the current instruction is a memory read operation
● mem_to_reg_idex: Selects the data source for the writeback stage (either memory or ALU)
● alu_op_idex: Specifies the type of operation to be performed by the ALU in the EX stage
● mem_write_idex: Indicates if the current instruction is a memory write operation
● alu_src_idex: Selects the second operand for the ALU in the EX stage (either rt or immediate

value)
● reg_write_idex: Indicates if the current instruction is a register write operation
● operand_a_idex: The value of the first operand for the ALU in the EX stage
● operand_b_idex: The value of the second operand for the ALU in the EX stage
● instruction_idex: The current instruction being executed
● pc_idex: The current program counter value for the current instruction being executed
● wb_address_idex: The register address to be written back to in the writeback stage.

The module below is responsible for wiring the required input/output ports of the ex/mem stage in our top
module.

Figure 3.3.27: EXMEMWires

45

During this stage, the processor executes the instruction that was fetched and decoded in the previous
stages. It calculates the address of memory for any memory read or write operations, performs any
necessary arithmetic or logical operations, and updates any registers that need to be written to.

The signals and data carried by these wires are used to perform these operations and to pass data and
control signals between the various stages of the pipeline. For example, alu_result_exmem carries the
result of the arithmetic or logical operation that was performed during this stage, and wb_address_exmem
contains the address of the register to which the result should be written.

Now, the final stage of pipelining is the MEM\WB stage, which is given below and wired in top module.

Figure 3.3.28:MEMWBWires

These are the wire declarations for the "mem/wb" stage variables in the processor. These wires are used to
transfer the results of the memory stage and write back stage of the processor.

Here's what each of these wires is used for:

● reg_dst_memwb: A control signal that determines whether the destination register for the current
instruction is rt (register 2) or rd (register 1).

● branch_memwb: A control signal that indicates whether the current instruction is a branch
instruction.

● jump_memwb: A control signal that indicates whether the current instruction is a jump
instruction.

● mem_read_memwb: A control signal that indicates whether the current instruction is a memory
read instruction.

46

● mem_to_reg_memwb: A control signal that determines whether the value to be written back to
the register file comes from the ALU or memory.

● alu_op_memwb: A control signal that specifies the operation to be performed by the ALU in the
write-back stage.

● mem_write_memwb: A control signal that indicates whether the current instruction is a memory
write instruction.

● alu_src_memwb: A control signal that determines whether the second operand to the ALU comes
from

● the register file or is an immediate value.
● reg_write_memwb: A control signal that indicates whether the current instruction writes back to

the register file.
● operand_a_memwb: The first operand to the ALU.
● operand_b_memwb: The second operand to the ALU.
● instruction_memwb: The current instruction being executed.
● alu_result_memwb: The result of the ALU operation performed in the write-back stage.
● zero_memwb: A control signal that indicates whether the result of the ALU operation was zero.
● read_data_memwb: The data read from memory in the memory stage.
● pc_memwb: The program counter value for the current instruction in the write-back stage.
● wb_address_memwb: The address of the register to be written to in the write-back stage.

47

2. Once we have all 5 stages of pipeline interconnected and wired in our top processor module, we
will move on to the next step of the process in which we have to identify their registers under
their specified parts.

Figure 3.3.29: IF/ID Pipeline registers

This code block instantiates a module called IFID and connects its input and output ports to the
corresponding signals in the top-level module.

The IFID module takes the following inputs:

● clk: a clock signal used to synchronize the internal operations of the module
● reset: a signal used to reset the module to its initial state
● flush: a signal used to flush the instruction in the current pipeline stage when a branch

misprediction occurs
● instruction: the current instruction being fetched from memory
● pc_out: the current program counter value
● instruction_ifid: the instruction that will be passed from the instruction fetch stage to the

instruction decode stage
● pc_ifid: the program counter value that will be passed from the instruction fetch stage to the

instruction decode stage

The IFID module has internal logic to latch the input values on each clock cycle, store them in registers,
and pass them to the output ports for use in the next stage of the pipeline.

48

Figure 3.3.30: ID/EX Pipeline registers

This code block is instantiating an instance of the IDEX module and connecting its inputs and outputs to
various signals from the parent module.

The IDEX module represents the second stage of a pipelined processor and stands for "Instruction
Decode/Execute". It takes the instruction and program counter from the previous stage (IF/ID) and
decodes the instruction, generates the necessary control signals, and prepares the operands for the ALU.
The resulting output of this stage includes the updated control signals, ALU operands, and other relevant
data, which are forwarded to the next stage (EX/MEM) and also saved in latches for forwarding to
subsequent stages.

Therefore, the code block is passing several inputs such as clk, reset, flush, instruction, and pc_out to the
IDEX module, as well as receiving several outputs such as reg_dst_exmem, branch_exmem,

49

jump_exmem, mem_read_exmem, mem_to_reg_exmem, alu_op_exmem, and so on. These outputs
represent the necessary control signals and ALU operands for the next stage (EX/MEM) to execute the
decoded instruction. Additionally, some of the outputs are saved in latches for forwarding to later stages
in the pipeline.

Figure 3.3.31: EX/MEM Pipeline registers

This code block instantiates an "EXMEM" module that represents the third stage of a pipelined processor.
The module takes in various control and data signals from the previous pipeline stage (IDEX), as well as
the current clock and reset signals.

50

The EXMEM module performs the execution of the instruction, such as arithmetic, logical or comparison
operations, on the operands received from the previous pipeline stage. It then forwards the results to the
next pipeline stage (MEMWB). It also generates control signals such as whether a branch should be taken
or not based on the instruction's opcode.

The signals passed between the modules include control signals such as register destination, whether to
branch or jump, whether to read or write memory, ALU operation, and whether to write to the register
file. Data signals include the two operands, the instruction to be executed, the ALU result, whether the
result is zero, the program counter, and the address to write back to the register file.

Figure 3.3.32:MEM/MWB Pipeline registers

51

This code block is defining a module called MEMWB which has inputs and outputs for various signals
used in a computer's memory and write-back stages.

The inputs to the module include the clock signal (clk), reset signal (reset), various control signals such as
whether to write to a register (reg_write_exmem) or perform a memory write (mem_write_exmem), and
data signals such as the ALU result (alu_result_exmem) and read data (read_data).

The outputs from the module include signals that will be used in the next pipeline stage (reg_dst_memwb,
jump_memwb, etc.), the data that will be written to memory (write_data_memwb), and signals indicating
whether a memory read was performed (mem_read_memwb) or whether the ALU result was zero
(zero_memwb).

This module is typically used in a pipelined CPU architecture, where each stage of the pipeline is
responsible for a different part of the instruction execution process. In this case, the MEMWB module is
responsible for handling the memory access and write-back stages.

52

3.3.3. Task 3: Implementation of Hazard Control unit to detect any hazards
1. Pipelining in a processor allows multiple instructions to be executed simultaneously, which

increases the overall throughput of the processor. However, pipelining introduces new hazards
that need to be controlled, such as data hazards and control hazards.

Data hazards occur when instructions in the pipeline require data from a previous instruction that
has not yet completed. This can cause stalls in the pipeline, which reduces the throughput of the
processor. A hazard control unit is responsible for detecting and resolving data hazards by
forwarding data from the output of one pipeline stage to the input of another pipeline stage, or by
inserting pipeline stalls when necessary.

Control hazards occur when the outcome of a conditional branch instruction is not yet known
when the next instruction enters the pipeline. This can cause the pipeline to execute incorrect
instructions, which can result in incorrect program behavior. A hazard control unit can detect and
resolve control hazards by inserting pipeline stalls or by predicting the outcome of conditional
branch instructions.

In summary, a hazard control unit is necessary in pipelining to ensure correct and efficient
execution of instructions in the pipeline by detecting and resolving data hazards and control
hazards.

Figure 3.3.33: Hazard control initialization

This Verilog module implements a hazard detection unit for a pipeline processor. The module has the
following inputs:

● clk: a clock signal used for synchronization
● rs1_addr: the address of the first source register
● rs2_addr: the address of the second source register
● mem_read_idex: a signal indicating whether a memory read is performed in the ID/EX pipeline

stage
● reg_write: a signal indicating whether a register write is performed in the pipeline

53

● reg_write_idex: a signal indicating whether a register write is performed in the ID/EX pipeline
stage

● instruction_ifid: the instruction in the IF/ID pipeline stage
● instruction_idex: the instruction in the ID/EX pipeline stage

The module has one output:

● stall: a signal indicating whether a stall is required in the pipeline

The hazard detection unit is responsible for detecting data hazards in the pipeline by checking whether the
source registers of an instruction being fetched in the IF/ID stage match the destination registers of an
instruction being decoded in the ID/EX stage. If a hazard is detected, the hazard detection unit asserts the
stall signal, which stalls the pipeline and prevents further instructions from being fetched until the hazard
is resolved.

Figure 3.3.34: Hazard control always blocks

In the block of code given above, the module uses another always block to check for data hazards
between the current instruction in the ID/EX stage and the previous memory-read instruction in the
MEM/WB stage. If a dependency is detected between the source operands of the current instruction and
the destination register of the previous memory-read instruction, stall is set to 1 to insert a bubble into the
pipeline.

54

FLUSH UNIT: The flush unit in a MIPS processor is responsible for clearing or "flushing" the contents
of the instruction pipeline in certain situations. Specifically, it is used when a branch or jump instruction is
encountered, as these instructions may cause the processor to execute instructions out of order, which can
lead to incorrect results.

Figure 3.3.35: Flush unit

The code block defines a flush unit module that takes in inputs zero, branch_idex, and jump_idex, and
outputs flush.

The always @* block uses a ternary operator to assign the value of flush. If zero is asserted (1) and
branch_idex is asserted (1), or if jump_idex is asserted (1), then flush is set to 1, indicating that the
pipeline should be flushed. Otherwise, flush is set to 0, indicating that the pipeline should not be flushed.

55

3.3.4. Task 4: Simulations
1. In order to simulate our working process, we must write a test bench to be used while running

modelsim built in simulation tool to generate clk.

Figure 3.3.36: Test bench simulation

This code block is a test bench module for a MIPS processor design. It instantiates the DUT (Design
Under Test) module, which is the actual processor implementation that needs to be tested. The test bench
provides the clock and reset signals to the DUT and sets their values according to a predefined sequence
of events.

The clk signal is a clock input that is toggled every 5 time units using an always block with a delay of 5
time units. The reset signal is an active low reset input that is set to 1 initially and then set to 0 after 15
time units using delay operator #.

The processor_top is the module being tested, which takes the clk and reset signals as inputs. By
instantiating the processor_top module and providing the input signals, the test bench can test the
functionality of the MIPS processor implementation.

The outcome of the simulations could be found under the Analysis section.

56

4. ANALYSIS

4.1 Experimental Results

Let’s start with first uploading our files onto the modelsim environment to be run and simulated.

Figure 4.1.1: Uploading .v files

As could be seen above, we uploaded all of the fully developed modules including the top module to a file
in modelsim, named work. This file will be physically located in the computer disk as well.

57

We will then simulate our test bench using ModelSim’s simulation tool, and add waves to the
corresponding modules to analyze the working processor.

Figure 4.1.2: Running the simulation tool

For the simulation tool, we must select the test bench file and click simulate. The program will
automatically add a wave and have the required files ready to be used under the simulation wave tool. We
will first select the simulation to be at a 5ps time cycle to analyze it step by step.

In order to check the simulation process, we must select the modules that will be necessary from our list,
in this case we will select the ALU module first.

Figure 4.1.3: Selecting alu module
Once selected, we will add waves to the module and using our wave simulation tool, we will run the
processor in a 5ps time cycle at first to check how it interacts with the overall processor. The next step of
the process at this point is to click Run.

58

Testing instruction ADD:

Figure 4.1.4: Instruction fetch of add

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00E80820; // add to be fetched first. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00E80820 in
binary is 000000 00111 01000 00001 00000 100000

As we know, add is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00111 = operand a, 01000 = operand b, 00001 = destination register,
function: 100000

Figure 4.1.5: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [7]’s value 7, and
adding it to register [8]’s value 6. The resulting add operation will be 13.

Figure 4.1.6: Register values simulation

59

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 7 and 8, with values 7 and
6 respectively.Which is correct.

Figure 4.1.7: ADD Operation ALU

Now moving to the execution stage of our process, we have ADD operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting 13 from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 1101 at alu_result register defined above. Therefore it is in fact
properly working because 6 + 7 = 13.

Now let's take a look at Write back data at our Write back mux.

Figure 4.1.8: ADD Operation WB
It is writing back the result 1101.

Now let's check if at the end of all 5 stages our result is written back at register file module,

Figure 4.1.9:WB to register file module

Yes, it did in fact write back the 01101 to the write_data location of the register module. Which will
satisfy the working instruction test for ADD instruction.

60

Testing instruction AND:

Figure 4.1.10: Instruction mem AND

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430824; // and to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430824 in
binary is 000000 00010 00011 00001 00000 100100

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 100100

Figure 4.1.11: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 7, and
anding it to register [3]’s value 3. The resulting operation will be 3.

Figure 4.1.12: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 7 and
3 respectively.Which is correct.

61

Figure 4.1.13: AND Operation ALU

Now moving to the execution stage of our process, we have AND operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting3 from our signals. We can observe that our first fetched instruction from instruction
memory is resulting in 0011 at the alu_result register defined above. Therefore it is in fact properly
working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

Figure 4.1.14: Data memory block

Figure 4.1.15:Write back MUX

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.15:Write back to register file

Yes, it did in fact write back the 0011 to the write_data location of the register module. Which will
satisfy the working instruction test for AND instruction.

62

Testing instruction OR:

Figure 4.1.15: Instruction fetch OR

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction32'h00430825; // or to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430825 in
binary is 000000 00010 00011 00001 00000 100101

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 100101

Figure 4.1.16: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 7, and
anding it to register [3]’s value 3. The resulting operation will be 3.

Figure 4.1.17: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 7 and
3 respectively.Which is correct.

63

Figure 4.1.18: ALU Operation OR

Now moving to the execution stage of our process, we have OR operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting 7 from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 0111 at the alu_result register defined above. Therefore it is in fact
properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

Figure 4.1.19: Data memory

Figure 4.1.20:Write Back

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.21: Regfile write data

Yes, it did in fact write back the 0011 to the write_data location of the register module. Which will
satisfy the working instruction test for OR instruction.

64

Testing instruction NOR:

Figure 4.1.22: Instruction fetch NOR

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430827; // nor to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430827 in
binary is 000000 00010 00011 00001 00000 100111

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 100111

Figure 4.1.23: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Figure 4.1.24: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively.Which is correct.

65

Figure 4.1.24: ALU module for NOR

Now moving to the execution stage of our process, we have NOR operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 32b’111…10100 at the alu_result register defined above. Therefore it
is in fact properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

Figure 4.1.25: Data memory for NOR

Figure 4.1.26:WBMux for NOR

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.27:Write data register at the end for NOR

Yes, it did in fact write back the32b’111…10100 to the write_data location of the register module.
Which will satisfy the working instruction test for NOR instruction.

66

Testing instruction SUB:

Figure 4.1.28: Instruction fetch for SUB

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430822; // sub to be fetched next. The 32 bit binary version of the instruction is given to
us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430822 in
binary is 000000 00010 00011 00001 00000 100010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 100010

Figure 4.1.29: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Figure 4.1.30: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively.Which is correct.

67

Figure 4.1.31: ALU Operation for SUB

Now moving to the execution stage of our process, we have SUB operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 111 = 7 at the alu_result register defined above. Therefore it is in fact
properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

Figure 4.1.32: Data memory SUB

Figure 4.1.33: AWB Mux SUB

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.34: Reg write back SUB

Yes, it did in fact write back the 000..111 to the write_data location of the register module. Which
will satisfy the working instruction test for SUB instruction.

68

Testing instruction SLT:

Figure 4.1.35: Instruction fetch of SLT

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h0043082A; // sub to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h0043082A
in binary is 000000 00010 00011 00001 00000 101010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 101010

Figure 4.1.36: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Figure 4.1.37: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively.Which is correct.

69

Figure 4.1.38: ALU Operation for SLT

Now moving to the execution stage of our process, we have SLT operation between two operands which
had values hardcoded in the register file module to them. We have so far fetched the instruction, and
moved the register address with their corresponding values. Now let's check our simulation results and see
if we get the resulting values from our signals. We can observe that our first fetched instruction from
instruction memory is resulting in 00.000 at the alu_result register defined above because 9 is not less
than 2. Therefore it is in fact properly working.

Now let's take a look at our Data memory and Write Back module at our Write back mux.

Figure 4.1.39: SLT for Data memory

Figure 4.1.40:WB mux for Data memory

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.41: Reg write back SLT

Yes, it did in fact write back the 000..000 to the write_data location of the register module. Which
will satisfy the working instruction test for SLT instruction.

70

Testing instruction DIV:

Figure 4.1.42: Instruction fetch for DIV

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h0043082A; // sub to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h0043082A
in binary is 000000 00010 00011 00001 00000 101010

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 011010

Figure 4.1.43: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Figure 4.1.44: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively.Which is correct.

71

Figure 4.1.45: ALU Operation for DIV

Now moving to the execution stage of our process, we have a DIV operation between two operands
which had values hardcoded in the register file module to them. We have so far fetched the instruction,
and moved the register address with their corresponding values. Now let's check our simulation results
and see if we get the resulting values from our signals. We can observe that our first fetched instruction
from instruction memory is resulting in 00…100 at the alu_result register defined above because 9/2=4.5
and 4 is what it will be displayed. Therefore it is in fact properly working.

Figure 4.1.46: Datamemory for DIV

Figure 4.1.47:WB mux for DIV

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.48: Reg write back DIV

Yes, it did in fact write back the 000..100 to the write_data location of the register module. Which
will satisfy the working instruction test for DIV instruction.

72

Testing instruction MUL:

Figure 4.1.49: Instruction fetch for MUL

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h00430818; // MUL to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h00430818
in binary is 000000 00010 00011 00001 00000 011000

As we know, and is a R-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 00010 = operand a, 00011 = operand b, 00001 = destination register,
function: 011000

Figure 4.1.50: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9, and
anding it to register [3]’s value 2.

Figure 4.1.51: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 3, with values 9 and
2 respectively.Which is correct.

73

Figure 4.1.52: ALU operation for MUL

Now moving to the execution stage of our process, we have a MUL operation between two operands
which had values hardcoded in the register file module to them. We have so far fetched the instruction,
and moved the register address with their corresponding values. Now let's check our simulation results
and see if we get the resulting values from our signals. We can observe that our first fetched instruction
from instruction memory is resulting in 00…10010 at the alu_result register defined above because
9*2=18 and 18 is what will be displayed at alu_result. Therefore it is in fact properly working.

Figure 4.1.53: Datamemory for MUL

Figure 4.1.54:WB mux for MUL

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.55: Reg write back DIV

Yes, it did in fact write back the 000..10010 to the write_data location of the register #1 module.
Which will satisfy the working instruction test for MUL instruction.

74

Testing instruction ADDI:

Figure 4.1.56: Instruction fetch for ADDI

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h20410002; // ADDI to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h20410002
in binary is 001000 00010 00001 0000000000000010

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
001000 = op code, 00010 = operand a, 00001 = destination register, Imm = 10.

Figure 4.1.57: Register values

In the figure above, we can see that our register file holds arbitrary register values to be tested during
these operations fetched from instruction memory. In this case, we are using register [2]’s value 9.

Figure 4.1.58: Register values simulation

In the figure above, we can observe that during the next cycle our instruction memory has been updated
with the corresponding register numbers and register data. It is reading register 2 and 1, with values 9 and
3 respectively.Which is correct.

75

Figure 4.1.59: ALU operation for ADDI

Now moving to the execution stage of our process, we have an ADDI operation between an operand and
immediate value, which has values hardcoded in the register file module to them. We have so far fetched
the instruction, and moved the register address with their corresponding values. Now let's check our
simulation results and see if we get the resulting values from our signals. We can observe that our first
fetched instruction from instruction memory is resulting in 1011 at the alu_result register defined above
because 9+2=11 and 11 is what will be displayed at alu_result. Therefore it is in fact properly
working.

Figure 4.1.60: Datamemory for ADDI

Figure 4.1.61:WB mux for ADDI

It could be observed that these two modules are also operating successfully for the first four stages of the
pipeline, now let's check if the final result is written back to our write register of our register module:

Figure 4.1.62:WB mux for ADDI

Yes, it did in fact write back the 000..1011 to the write_data location of the register #1 module.
Which will satisfy the working instruction test for ADDI instruction.

76

Testing instruction BEQ:

Figure 4.1.63: Instruction fetch for BEQ

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h10850019; //BEQ to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h10850019
in binary is 000000 01000 01000 01010000000000011001

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000000 = op code, 01000 = operand a, 01000 = destination register, Imm = 01010000000000011001.

Figure 4.1.64: PC for BEQ

Figure 4.1.65: PC_mux for BEQ

As could be seen above, once BEQ instruction is passed thru the PC Mux, the signal for branch goes
high, and will have a branch operation successfully conducted afterwards.

77

Figure 4.1.65: Branch calculation

The above figure shows how the branch is calculated in ALU module, and our branch adder
module’s current pc with sign extend and pc_branch signals which shows where to branch.

78

Testing instruction J:

Figure 4.1.66: Jump instruction

As we can see in the figure above, we will have our jump instruction fetch and execute. We will fetch the
instruction 32'h08000101; // JUMP. The 32 bit binary version of the instruction is given to us in the
simulation. If we translate it to binary and separate its section we will see that 32'h08000101 in binary is
000010 00000000000000000100000001

As we know, and is a J-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
000010 = op code, Imm = 00000000000000000100000001.

Figure 4.1.66: Jump calculation

As we can see in the above figure, our module will calculate the target address and jump from the
previous PC value. Therefore, this instruction is working properly.

79

Testing instruction LW:

Figure 4.1.67: Instruction fetch for LW

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'h8c410064; // LW to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'h8c410064
in binary is 100011 00010 00001 0000000001100100

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
100011 = op code, 00010 = operand a, 00001 = destination register, Imm = 0000000001100100.

Figure 4.1.68: Register values simulation

As we can see in the figure above, we have our source register displayed under read_register1, which is
register 2. And our destination register at register 1.

Figure 4.1.69: ALU for LW

Now moving to the execution stage of our process, we have an LW operation between an operand and
immediate value, which has values hardcoded in the register file module to them. We have so far fetched
the instruction, and moved the register address with their corresponding values. Now let's check our
simulation results and see if we get the resulting values from our signals. We can observe that our first
fetched instruction from instruction memory is resulting in 1011 at the alu_result register defined above
because 9+100=109 and 1101101 is what will be displayed at alu_result. Therefore it is in fact
properly working.

80

Testing instruction SW:

Figure 4.1.70: Instruction fetch for SW

As we can see, the instruction is being fetched from the instruction memory correctly. We define the
instruction 32'hAC610064; // SW to be fetched next. The 32 bit binary version of the instruction is given
to us in the simulation. If we translate it to binary and separate its section we will see that 32'hAC610064
in binary is 101011 00011 00001 0000000001100100

As we know, and is a I-Type instruction, therefore if we split the 32 bit binary values into its
corresponding sections, we will have:
101011 = op code, 00011 = operand a, 00001 = destination register, Imm = 0000000001100100.

Figure 4.1.71: Register values simulation

As we can see in the figure above, we have our source register displayed under read_register1, which is
register 2. And our destination register at register 1.

Figure 4.1.72: ALU for SW

We can observe that our first fetched instruction from instruction memory is resulting in 1011 at the
alu_result register defined above because 2+100=102 and 1100110 is what will be displayed at
alu_result. Therefore it is in fact properly working.

81

Figure 4.1.73:WBMux for SW

Figure 4.1.73: RAM results

As we can see, our RAM block and WB mux, will in fact include 000…10 results on the
corresponding RAM block of 102. Therefore, SW instruction is working properly.

82

Testing instruction MFHI and MFLO:

The MFHI (Move From HI) and MFLO (Move From LO) instructions are used in MIPS assembly
language to retrieve the contents of the special-purpose registers HI (High) and LO (Low), respectively.
These registers are used for storing the high and low parts of the result when performing multiplication or
division operations in MIPS.

Here's a brief explanation of each instruction:

MFHI (Move From HI):

Syntax: mfhi rd
Operation: Copies the value from the HI register to the destination register rd.
Example: mfhi $t0 copies the value of HI into register $t0.
MFLO (Move From LO):

Syntax: mflo rd
Operation: Copies the value from the LO register to the destination register rd.
Example: mflo $t1 copies the value of LO into register $t1.
These instructions are particularly useful when performing multiplication or division operations that
require a 64-bit result or when working with large numbers in MIPS assembly language.

Figure 4.1.74:MFHI & MFLO results

As could be seen from the Verilog code above, we have instantiated our hi and lo alu results accordingly,
Now let's ake a look at our ALU operation.

Therefore, it is in fact passing the instruction MFHI and MFLO to our alu block successfully to
execute.

83

Testing hazard:

In order to test our hazard detect unit, we will have two add operations back to back that will require the
first add operations result on the second operations. As we know, this won’t be possible until the first add
operation’s ALU result is successfully achieved by the processor. Therefore, we are expecting a stall
signal here.

Figure 4.1.75: First ADD operation

Our first operation is 32'h00E80820 // ADD, as we know it is an R type operation. If we break this
instruction apart we will get: 000000 00111 01000 00001 00000 100000

000000 = op code, 00111 = operand a, 01000 = operand b, 00001 = destination register,
function = 100000.

In this operation we are adding the value of register [7] + register [8] and storing it in register [1].
Now let’s take a look our register file to see what the values in those registers are:

Figure 4.1.76: Register values

Now, let's take a look at our second ADD operation that will be fetched right after first ADD operation.

Figure 4.1.75: Second ADD operation

Our second operation is 32'h00280820; // ADD, as we know it is an R type operation. If we break this
instruction apart we will get: 000000 00001 01000 00001 00000 100000

000000 = op code, 00001 = operand a, 01000 = operand b, 00001 = destination register,
function = 100000.

Now, since we have a dependence at our register 1 value, our system will have to stall once to get the
correct value for register [1].

84

Figure 4.1.75: Hazard control module

As we can see, our hazard module will generate stall = 1 signal for the following operation to be stalled
until our register[1] value is updated from our first instruction. Once it does, it will continue to finish the
second instruction going into the ALU module and will give us the correct value for the operation.
Therefore, our Hazard control is working properly as well.

85

4.2 Data Analysis

We have conducted a 10 minute youtube video to demonstrate the basics of our processor and how it
works. It could be reached from this link: https://youtu.be/u5yX6-xm8oE

Now, to analyze how our instructions are being fetched to our mips processor, let’s analyze our
instructions.txt file that is available in the same directory as of our processor files.

Figure 4.2.1: Instructions.txt file

We are inserting our instructions via an output text file to our processor’s instruction_memory module in
order to fetch instructions. This way, we are simulating our processor at all times, and the only file we
need to make adjustments is this text file when we want to upload new sets of instructions for the
program.

86

https://youtu.be/u5yX6-xm8oE

Now, let's take a look at our instructions_memory module to understand how this is allowed and possible
to accomplish such feature:

Figure 4.2.1: Instructions_memory module

87

The given code represents a Verilog module called "instruction_memory" that models an instruction
memory block. It reads instructions from a text file called "instructions.txt" and stores them in an internal
memory array called "mem". The module provides an interface to access instructions based on the
provided address.

Module and Memory Declaration:

The module declaration specifies the module name (instruction_memory) and its ports: clk (a clock
input), address (a 32-bit input representing the memory address), and instruction (a 32-bit output
representing the retrieved instruction).

Figure 4.2.2: module declaration

The mem declaration creates an internal memory array of size 4096, where each element is an
8-bit register. It represents the instruction memory.

Figure 4.2.3:Memory declaration

Initial Block:

Figure 4.2.4:Initial block

88

The initial block is executed once at the start of simulation. Inside the block, it attempts to open
the file "instructions.txt" using $fopen function, which returns a file pointer (fp). If the file is
successfully opened (fp != 0), the block reads instructions from the file and stores them in the
memory array mem.

The for loop iterates from 0 to 4095, reading a hexadecimal value from the file using $fscanf and
storing it in mem[i]. If the read operation fails (status == 0), it displays an error message and
terminates the simulation using $finish. Finally, the file is closed using $fclose(fp).

If the file cannot be opened (fp == 0), it displays an error message and terminates the simulation.

Always Block:

Figure 4.2.5: Always block

The always block triggers whenever there is a change in the address input. It assigns the
corresponding instruction to the instruction output by concatenating four bytes from the mem
array based on the given address. The concatenation is performed using the {} syntax, which
combines the four elements into a 32-bit value.

In summary, this Verilog code represents an instruction memory module that reads instructions
from a file during initialization and provides an interface to retrieve instructions based on the
provided memory address.

Once the instructions get fetched, the processor will continue doing what its doing with the rest
of its blocks and completing the instruction as it is displayed in 4.1 Experimental results
sections of this report.

89

4.3 Demo Analysis

I uploaded our demonstration videos to YouTube, you can access them from these links, although
every instruction has been analyzed individually at our Experimental Result section of this
report. Since If have already done over 90 pages for the report, I didn’t want to go way more
beyond this point. Therefore everything regarding analysis and demo is found under these
youtube links, as they are also submitted separately to Canvas.

Demonstration of r = a - [a/b]*b || Link: https://youtu.be/-FvuESWfeQ8
Demonstration of FORWARDING Logic and Analysis: https://youtu.be/mS1JrcWa30A
Demonstration of HAZARD Control unit and Analysis: https://youtu.be/zPa9nVMNQyU
Demonstration of Sample Program: https://youtu.be/OAL-ecyAuaA

Quartus Analysis for the processor:

For some reason, it seems like that the FPGA memory is not showing up on Quartus Hardware
analysis that was synthesized. Here is our results for Hardware analysis:

Figure 4.3.1: Quartus analysis

I have tried working on it and fixing it, however I didn’t get any positive results. Therefore, this
part of the project is not synthesizing correctly where it shows 0 total registers and logical
elements for our FPGA syntheses.

90

https://youtu.be/-FvuESWfeQ8
https://youtu.be/mS1JrcWa30A
https://youtu.be/zPa9nVMNQyU
https://youtu.be/OAL-ecyAuaA

General Program instructions, and how to manage the demonstration is given below with
directions and logic behind it:

For given program: r = a - [a/b] * b

I-Type: 001000 00000 00010 0000000000000010 // addi r2, r0, 2
I-Type: 001000 00000 00001 0000000000001001 // addi r1, r0, 9
R-Type: 000000 00010 00001 00011 00000 011010 // div r3, r2, r1
R-Type: 000000 00011 00010 00100 00000 011000 // mul r4, r3, r2
R-Type: 000000 00001 00100 00101 00000 100010 // sub r5, r1, r4

Our result (r) will be in Register 5 location stored in memory.

To run the code above, we must store the hex conversions of binary operations in our
instructions.txt file and run the simulation. Here below is the given instructions in hex that was
demonstrated in the video as well. Below is given how to store these instructions in our
instruction.txt file.

20
02
00
02
20
01
00
09
00
41
18
1A
00
62
20
18
00
24
28
22

91

Now Let's test our processor with a different set of operations, A simple multiplication and a
longer multiplication.

below does 2 x 9 = 18 saves result into r4

001000 00000 00010 0000000000000010 // 20020002
001000 00000 00011 0000000000001001 // 20030009
000000 00011 00010 00100 00000 011000 // 00622018

below does 25631 x 7543 = 193334633 saves result into r4

001000 00000 00010 0000000000000010 // 2002641F
001000 00000 00011 0000000000001001 // 20031D77
000000 00011 00010 00100 00000 011000 // 00622018

I already included a hazard control unit working in demonstration, but I will add the instructions
that I checked here as well.

ADD r3, r1, r2
ADD r4, r1, r3

This causes hazard unit to stall 1 because our r3 value needs to complete updating before it uses
it for the next instruction's source operand.

92

5. CONCLUSIONS

As a conclusion we have integrated and prototype the datapath and the control units of the simple
32-bit MIPS processor with five pipeline stages. This processor is written in Verilog hardware
language and able to perform arithmetic/logic such as AND, ADD, ADDI, OR, NOR, SUB,
MUL, DIV, data movement such as LW, SW, MFHI, MFLO, and flow control such as J and BEQ
instructions. Moreover, all instructions had passed the test successfully and were working
accordingly. Finally, The learning outcomes of this project resulted in having hands- on
experience on building a computer processor and implementing it on hardware.

6. REFERENCES

93

Introduction to the MIPS Implementation,

https://www.d.umn.edu/~gshute/mips/mips-intro.xhtml. Accessed 4 May 2023.

MIPS Quick Tutorial, https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html.

Accessed 4 May 2023.

“ModelSim HDL simulator | Siemens Software.” Siemens EDA,

https://eda.sw.siemens.com/en-US/ic/modelsim/. Accessed 4 May 2023.

“VHDL MIPS 5 stage pipeline Bug.” Stack Overflow, 8 December 2011,

https://stackoverflow.com/questions/8434743/vhdl-mips-5-stage-pipeline-bug. Accessed

4 May 2023.

94

